

Advanced Engine Study Program

A.I. Masters, D.E. Galler, T.F. Denman, R.A. Shied, J.R. Black, A.R. Fierstein, G.L. Clark, and B.R. Branstorm Pratt & Whitney Government Engines & Space Propulsion West Palm Beach, Florida

June 1993

Prepared for Lewis Research Center Under Contract NAS3-23858

(NASA-CR-187217) ADVANCED ENGINE STUDY PROGRAM Final Report (PWA) 243 p N93-28946

unclas

G3/20 0174963

FOREWORD

This technical report presents the results of an Advanced Space Engine Study. The study was conducted by the Pratt & Whitney Government Engines & Space Propulsion Division of the United Technologies Corporation for the National Aeronautics and Space Administration, Lewis Research Center, under Contract NAS3-23858, Task Order D.4.

The study was initiated in November 1988 and completed in January 1990. Mr. Paul Richter was the NASA Task Order Manager. The effort at P&W was carried out under Mr. James R. Brown, Program Manager, and Mr. Arthur I. Masters, Engineering Manager. Other individuals providing significant contributions in the preparation of the report were Donald E. Galler, Todd F. Denman, and Ricky A. Schied — System Performance Analysis; James R. Black and Aaron R. Fierstein — Heat Transfer; Gale L. Clark — Pump Design; and Bruce R. Branstrom — Turbine Design.

TABLE OF CONTENTS

		Page
I	INTRODUCTION AND SUMMARY	1
	INTRODUCTION	1
	CYCLE COMPARISON STUDY	1
	THROTTLING AND HIGH MIXTURE RATIO OPERATION	2
II	DESIGN AND PARAMETRIC ANALYSIS	5
	EXPANDER CYCLE COMPARISON	5
	Baseline Engine Parameters	5
	Heat Transfer	5
	Pumps	5
	Turbines	5
	Turbopump Configurations	6
	Full-Expander Cycle	6
	Split-Expander Cycle	7
	Dual-Expander Cycle	8
	Regenerators and Enhanced Heat Transfer	9
	Cycle Selection	9
	PARAMETRIC DATA	9
	Performance	10
	Engine Envelope	11
	Weight	11
	Nozzle Contour Trade-Off	11
	HIGHER CHAMBER PRESSURE REQUIREMENTS	12
	ENGINE-VEHICLE INTERFACES	19
	REFERENCES	19

	Page
III THROTTLING AND HIGH MIXTURE RATIO OPERATION	37
COMPONENT REQUIREMENTS	37
Combustion System	37
Thrust Chamber Cooling	38
Wide Range Control	39
Turbomachinery	4(
CYCLE DATA	4(
Split-Expander Cycle	41
Full-Expander Cycle With Regenerator	41
IV RECOMMENDATIONS	56
APPENDIX A — PARAMETRIC DATA	5
APPENDIX B — FULL-THRUST CYCLES	11
APPENDIX C — THROTTLED CYCLES	192
APPENDIX D — OFF-DESIGN MIXTURE RATIO CYCLES	209

LIST OF ILLUSTRATIONS

Figure		Page
1	Comparison of Achievable Chamber Pressure for Four Cycles Using Tubular Copper Thrust Chambers	3
2	Dual-Orifice Injection	4
3	Turbine Efficiency Comparisons	20
4	Back-to-Back Turbine Configurations	20
5	Full-Expander Cycle	21
6	Full-Expander Cycle Achievable Chamber Pressure	21
7	Split-Expander Cycle	22
8	Split-Expander Cycle Achievable Chamber Pressure	22
9	Thrust Chamber Wall Temperatures During Throttling	23
10	Thrust Chamber Wall Temperatures as a Function of High Mixture Ratio	23
11	Dual-Expander Cycle	24
12	Dual-Expander Cycle Achievable Chamber Pressure	24
13	Full-Expander Cycle With Regeneration	25
14	Full-Expander Cycle With Regeneration Achievable Chamber Pressure	25
15	Full, Split, Dual, and Regenerator Cycle Comparison With Tubular Thrust Chambers	26
16	Full, Split, Dual, and Regenerator Cycle Comparison With Milled Channel Thrust Chambers	26
17	Comparison of Predicted Performance (I_{spc}) With Measured Performance (I_{spm}) for the NASA Lewis High Area Ratio Nozzle (Data From Reference 1)	27
18	Pratt & Whitney — Rocket Performance Ideal Impulse Versus Pc for AR = 1000:1, O/F = 6	27
19	Bell Nozzle Truncation Performance — Length Sensitivity Based on a Maximum Payload Truncation; $P_c = 1500$, H_2 - O_2 , $O/F = 6.0$	28
20	Bell Nozzle Truncation Performance — Weight Sensitivity Based on a Maximum Payload Truncation; $P_c = 1500$, H_2 - O_2 , $O/F = 6.0$	28

Figure		Page
21	Advanced Split-Expander Cycle P _c Improvement With Increased Pump Efficiency	29
22	Advanced Full Expander With Regenerator Cycle P _c Improvement With Increased Pump Efficiency	29
23	Advanced Split-Expander Cycle P _c Improvement With Increased Turbine Efficiency	30
24	Advanced Full Expander With Regenerator Cycle P _c Improvement With Increased Turbine Efficiency	30
25a	Advanced Full Expander With Regenerator Cycle P _c Improvement With Increased Turbine Pressure Ratio	31
25b	Advanced Split-Expander Cycle With Regenerator Cycle P _c Improvement With Increased Turbine Pressure Ratio	31
26	Advanced Split-Expander Cycle P _c Improvement With Increased Bypass Flow Around Jacket	32
27	Advanced Full Expander With Regenerator Cycle P _c Improvement With Increased Regenerator Effectiveness	32
28	Advanced Split-Expander Cycle P _c Improvement Due to Increased Chamber Heat Transfer	33
29	Advanced Full Expander With Regenerator Cycle P _c Improvement Due to Increased Chamber Heat Transfer	33
30	Advanced Split-Expander Cycle P _c Improvement Due to Increased Chamber Length	34
31	Advanced Full Expander With Regenerator Cycle P _c Improvement Due to Increased Chamber Length	34
32	Engine Envelope	35-36
33	Coaxial Dual Area Orifice Injector	42
34	XLR-129 Demonstrator Engine Preburner Injector With Dual Tangential Entry Injection	43
35	Tangential Entry Dual-Orifice Injection	44
36	Maximum Thrust Chamber Wall Temperature With Throttling for a Typical Cycle and for the Split-Expander Cycle	45

Figure		Page
37	Comparison of Thrust Chamber Wall Temperature Versus Mixture Ratio for Typical and Split-Expander Cycles	45
38	Coolant Exit Temperature Versus Percent Thrust for the Full-Expander Cycle With Regeneration	46
39	Jacket Wall Temperature Versus Percent Thrust for the Full-Expander Cycle With Regenerator	46
40	Space Engine Control Schematic — Split-Expander Cycle	47
41	Space Engine Control Schematic — Full-Expander Cycle With Regeneration	48
42	Typical Turbopump Head-Capacity Curve	49
43	Volute Collector With Inducer Struts Provides Head-Flow Characteristics	49
44	Thrust Chamber and Nozzle Cooling Configuration for the Full-Expansion Cycle With Regeneration and the Split-Expander Cycle	50
45	Split-Expander Cycle Throttling, Coolant Exit Temperature Versus Percent Thrust	50
46	Split-Expander Cycle Throttling, JBV Control Valve Area Versus Percent Thrust	51
47	Split-Expander Cycle Throttling, TBV Control Valve Area Versus Percent Thrust	51
48	Split-Expander Cycle Throttling, Ratio of ΔP Across Injector to P_c Versus Percent Thrust	52
49	Split-Expander Cycle Chamber Pressure, and Nozzle Heat Transfer Versus Mixture Ratio	52
50	Full Expander With Regenerator, Coolant Exit Temperature Versus Percent Thrust	53
51	Full Expander With Regenerator, TBV Control Valve Area Versus Percent Thrust	53
52	Full Expander With Regenerator, Coolant Inlet Temperature Versus Percent Thrust	54
53	Full Expander With Regenerator, Ratio of ΔP Across Injector to P_c Versus Percent Thrust	54
54	Full-Expander Cycle With Regenerator, Chamber Pressure and Chamber/Nozzle Heat Transfer Versus Mixture Ratio	55
55-107	APPENDIX A — PARAMETRIC DATA	58-110

LIST OF TABLES

Table		Page
1	Engine System Requirements and Goals	2
2	Advanced Engine Study Range of Design Point Parameters	9
3	Comparison of P&W Predicted Performance (I _{spc}) With Measured Performance (I _{spm}) for the NASA Lewis 1030 to 1 Area Ratio Nozzle	11
4	Approaches to Higher Cycle Chamber Pressure	12
5	Cycle Parameters Improvement Values	14
6	Advanced Engine Parametric Study, Split-Expander Engine	15-16
7	Advanced Engine Parametric Study, Full-Expander Engine With a Hydrogen Regenerator	17-18
8	Vehicle-Engine Interfaces	19
9-48	APPENDIX B — FULL-THRUST CYCLES	112-191
49-56	APPENDIX C — THROTTLED CYCLES	193-208
57-74	APPENDIX D — OFF-DESIGN MIXTURE RATIO CYCLES	210-233

SECTION I INTRODUCTION AND SUMMARY

INTRODUCTION

NASA mission studies have identified the future need for a new Space Transfer Vehicle (STV) Propulsion System. The new system is to be an oxygen/hydrogen expander cycle engine of 7,500 to 50,000 lbs thrust or more, and must achieve high performance via efficient combustion, high combustion pressure, and high area ratio exhaust nozzle expansion. The engine is likely to require wide versatility in terms of such characteristics as throttleability, operation over a wide range of mixture ratios, autogenous pressurization, and in-flight engine thermal conditioning and vehicle propellant settling. Firm engine requirements will include: long life, man-rating, cost effective reusability, space basing, and fault-tolerant operation.

A design and analysis study was conducted to provide advanced engine descriptions and parametric data for STVs. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high performance with engine systems capable of achieving reliable and versatile operation in a space environment. Engine system requirements and goals are listed in Table 1.

The study was divided into three technical tasks. In the first task several expander cycle variations were compared from the standpoint of their applicability to a new space engine. Parametric performance, weight and envelope data were then prepared for the selected cycles. Under the second task, the selected cycles were used to investigate requirements for wide range throttling (20:1) and high mixture ratio (O/F = 12.0) operation. The third task was to conduct reviews and coordinate performance of the work.

CYCLE COMPARISON STUDY

Four expander cycle variations were evaluated with respect to their applicability to an STV-type engine, i.e., the full-, or single-, expander cycle; the split-expander cycle; the dual-expander cycle; and the full-expander cycle with a regenerator. The four cycles were compared on the basis of: (1) maximum achievable chamber pressure, which translates to engine performance, weight, and envelope, (2) system complexity, i.e., number of components, severity of cycle condition, technology availability, and program risk (3) throttling capability, and (4) high mixture ratio operation.

The comparison of maximum achievable chamber pressure was based on technology which was judged to be readily available by the mid-1990s and included two thrust chamber cooling methods — copper chambers with milled channel construction and tubular copper chambers. The results are shown in Figure 1 for the tubular copper thrust chambers. Based on the assumption of equivalent technology, the full-expander cycle with regeneration was found to have the highest chamber pressure capability. The maximum pressure with the split-expander cycle was near that of the regenerator cycle at thrust levels above 25,000 lbs, but dropped off at low thrust. The reduced capability was due to cooling limits, not available power. The dual-expander cycle shows good chamber pressure capability at low thrust, but is the lowest of the four cycles over the range of this study. Copper tubular thrust chambers were shown to provide a significant improvement in achievable chamber pressure over milled channel chambers.

On the basis of system complexity, the full expander cycle has the fewest components, the least severe design requirements, and is the most proven. The extra heat exchangers and oxidizer environment in the oxidizer turbine make the dual-expander cycle clearly the most complex. The split-expander cycle and full-expander cycle with regeneration were judged to be equal in complexity and slightly more complex than the full-expander cycle.

The primary difference in throttling and high mixture ratio operation between the four cycles is in the ability to provide adequate thrust chamber cooling and acceptable turbine inlet temperatures over the range of

TABLE 1. — ENGINE SYSTEM REQUIREMENTS AND GOALS

-lydrogen
Dxygen
f to 50,000 lbf (Study Range)
gn point at full thrust)
.0 (operating range at full thrust)
r
h not more than one
le/retractable section
regen section to 1200 (Study Range
/lbm at full thrust
/lbm at full thrust
Rated
st Compatible
ased
rts/20 Hours Operation (Goal)
ts/4 Hours Operation (Goal)

conditions required. The split expander cycle was found to have a significant advantage over other cycles for throttled and high mixture ratio operation.

On the basis of this comparison, the split expander and full expander cycle were selected as the cycles to be used for preparation of the parametric data. These data are presented in Appendix A of this report. The split expander cycle was selected as the baseline cycle for the throttling and high mixture ratio operation study. Secondary consideration was given to throttling the full expander cycle with regeneration.

THROTTLING AND HIGH MIXTURE RATIO OPERATION

The basic requirements for wide range throttling and high mixture ratio operation are: (1) achievement of high combustion efficiency over a wide thrust and mixture ratio range without excessive system pressure drop and complexity, (2) the ability to adequately cool the thrust chamber over the wide range of conditions required, (3) achievement of wide range control without undue control system complexity, and (4) pump flow stability and avoidance of turbine flow separation at low flowrates.

A number of design features were identified for meeting these requirements; they consisted of:

- Dual-orifice injection to provide acceptable pressure drop and high combustion efficiency over the wide range of fuel and oxidizer flows required (Figure 2)
- Use of the split-expander cycle to provide extra cooling capability for off-design operation
- Novel control schemes to provide increased cooling capacity at off-design conditions
- · Inducer-interstage struts and flow recirculation to provide off-design point pump stability
- Use of the split-expander cycle to reduce the turbine flow variation from full thrust to minimum thrust and, thereby, inhibit turbine flow separation at low thrust.

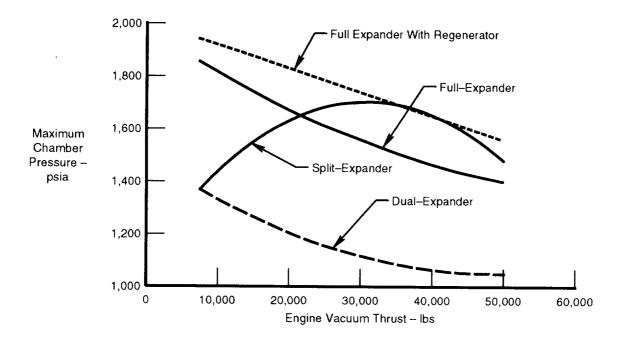


Figure 1. Comparison of Achievable Chamber Pressure for Four Cycles Using Tubular Copper Thrust Chambers

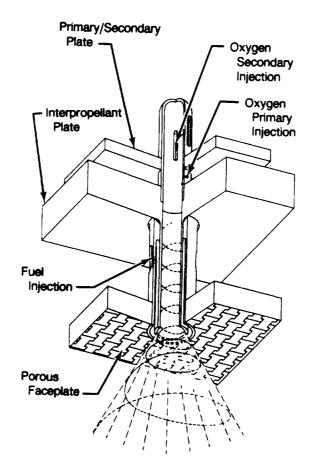


Figure 2. Dual-Orifice Injection

SECTION II DESIGN AND PARAMETRIC ANALYSIS

EXPANDER CYCLE COMPARISON

The high-performance, oxygen-hydrogen expander cycle engine has been selected by NASA as the baseline propulsion system for the Space Transfer Vehicle (STV). As a part of this study, a comparison of four expander cycle variations: the full-expander, split-expander, dual-expander, and full-expander with regeneration was conducted. Study results have provided advanced engine descriptions and parametric data for NASA's STV contractors.

In preparing these data, a technology level consistent with the early-to-mid 1990s was established as a baseline and is described below. The attainment of a given chamber pressure in an expander cycle engine is highly dependent upon this assumed technology level as well as the degree to which the cycle is optimized. Definition of the technology level for any study is always subjective. Although some assumptions may be revised as technology develops, moderate changes are not expected to compromise the validity of the cycle comparison.

Baseline Engine Parameters

(1) Heat Transfer

- Milled channel copper chambers and tubular copper chambers
- Haynes 230 tubular nozzles for high material strength and high-temperature operation
- Regenerative-cooling to an area ratio of 210 to 1 for the full- and split-expander
- Regenerative-cooling to an area ratio of 400 to 1 for the dual-expander
- Maximum thrust chamber wall temperature of 1460°R.

(2) Pumps

- Fuel pump bearing bore diameter \times speed (DN) of 3.0 \times 10⁶ rpm-mm
- Maximum pump tip speed of 2100 ft/sec
- Shrouded impellers.

(3) Turbines

- Back-to-back vaneless main turbines (except for dual-expander cycle)
- Maximum turbine tip speed of 2000 ft/sec
- Shrouded turbine blades.

Two thrust chamber cooling concepts were used in the baseline study: conventional milled channel copper thrust chambers and tubular copper thrust chambers. The tubular chamber provides an estimated 18 percent heat transfer chamber enhancement over the grooved chamber due to the increased hot wall surface area.

The pump bearing DN limit (product of diameter and speed in rpm-mm) was set at 3.0 million for the hydrogen turbopump and 1.4 million for the oxygen turbopump. Based on Pratt & Whitney's (P&W) demonstrated capability in the Space Shuttle Main Engine Alternate Turbopump Design and XLR-129 high-pressure engine, current DN limits are 2.4 million for ball bearings and 2.7 million for roller bearings in hydrogen and 1.4 million for bearings in oxygen. Previous P&W studies have indicated that 3.0 million DN for hydrogen is achievable with modest development. Although higher effective DNs are possible with hydrostatic bearings, higher speeds

complicate the pump design and drive the turbine toward partial admission (lower efficiency). The effect of turbopump speed was evaluated independently at 25,000-pounds thrust in the full-expander cycle.

Vaneless back-to-back, oxygen-hydrogen turbopumps are the baseline design for all cycles except the dual-expander cycle. Back-to-back turbines must operate with a single turbine drive and could not be applied to the dual-expander cycle. A discussion of each of the engine cycles and some component evaluations, which were also conducted, is contained in the following sections.

Turbopump Configurations

High turbopump efficiency is an important requirement for attaining high chamber pressure. One important issue is partial-admission versus full-admission turbines. The RL10 expander cycle engine initially had a partial admission turbine (approximately 120° admission), however, beginning with the RL10A3-3, the RL10 has used a full-admission turbine with a total-to-static efficiency of over 80 percent. A parameter used in turbine design, specific speed, illustrates the maximum obtainable efficiency and the optimum type of turbine. Figure 3 presents a specific speed efficiency curve. The STV cycle requires a high specific speed and a 2-stage, full-admission configuration to provide high turbine efficiencies.

Another issue investigated was turbine configuration. Back-to-back, counter-rotating, oxygen-hydrogen turbopumps were selected for the parametric study on the basis of their high turbine efficiency and compact packaging. A schematic of the concept is shown in Configuration A of Figure 4. Such configurations are not unique; they have been used for some time in gas turbine turbofan engines, but have not as yet been used in rocket engine turbomachinery. The configuration eliminates turbine-to-turbine pressure drop and decreases the inlet and exit guide vane losses. The configuration also provides a weight reduction by eliminating one turbine housing and inter-turbine ducting.

During independent component design studies conducted by P&W, analysis indicated possible rotor dynamic instabilities with some fuel pump configurations. Development of suitable damping techniques appears practical, but an alternative approach is use of a split rotor fuel pump driven by back-to-back turbines as shown in Configuration B of Figure 4. This configuration provides much shorter fuel turbopump shaft length for improved rotor dynamics at the expense of some of the weight and performance advantages of Configuration A.

Full-Expander Cycle

In the full-expander cycle, depicted in simplified form in Figure 5, fuel is pumped to a high pressure and used to cool the chamber and nozzle assembly and drive the turbopumps. The gaseous fuel is then injected into the main chamber to mix and burn with the liquid oxygen.

An advantage of any expander cycle engine is the relatively benign turbine environment compared to the staged combustion or gas generator cycles. The expander cycle also has lower turbopump discharge pressure requirements than the staged combustion cycle and higher performance than the gas generator. An expander cycle engine is accepted as a simpler, safer, more reliable propulsion system, having fewer failure modes than other cycles. The expander engine, of which the RL10 is an example, is a flight-proven concept.

The full-expander cycle relies on heat transferred from the chamber and nozzle to provide the energy required by the turbopumps. At low design thrust levels, the energy available in the cycle is sufficient to provide high chamber pressure levels. However, as design thrust increases the maximum achievable chamber pressure declines, as shown in Figure 6 for both copper tubes and milled channel copper chambers. Above an engine design thrust of 35,000 pounds, full-expander cycle engine chamber pressures are limited to just under 1500 psia based on the assumed technology level.

Throttling the full-expander cycle through the desired 20 to 1 range presents some difficult design challenges. Using the entire fuel flow for cooling, as thrust levels decrease, the coolant exit temperatures increase. High mixture ratio operation also presents a cooling problem for the full-expander cycle. The reduced fuel flow at the higher mixture ratios increases the chamber wall temperatures, reducing the chamber design life. These limitations can be partially offset by reducing combustor length, use of overcooling at the design point, or bypassing part of the flow at the design point and using all of the flow at off-design. However, these approaches introduce additional system complexity and cycle losses.

Overall, the full-expander cycle meets STV propulsion system requirements, but cooling requirements for throttling and high mixture ratio operation would either limit operation in this regime, require cycle compromises, or require added control provisions.

Split-Expander Cycle

In the split-expander cycle, shown schematically in Figure 7, a portion of the fuel bypasses the chamber and nozzle coolant passages and most of the turbomachinery. The split-expander retains the advantages of the full-expander discussed earlier and offers an additional benefit. With approximately half of the fuel flow routed from the 1st-stage pump discharge directly to the injector, the turbopump horsepower requirements for the split-expander cycle in a typical STV cycle are decreased by approximately 15 to 25 percent.

The energy available in the split-expander cycle is the same as the full-expander cycle for a given thrust and chamber pressure level. However, since the horsepower requirements of the turbopumps are less, the split-expander cycle can achieve higher chamber pressure levels at the same technology level. As shown in Figure 8, the split-expander cycle with a tubular copper chamber can achieve engine chamber pressures above 1500 psi at engine thrust levels of 12,000 to over 50,000 pounds. The maximum chamber pressure is approximately 150 psi higher with tubular chambers than milled channel chambers.

At thrust levels below 25,000 pounds, the maximum chamber pressure with the split-expander begins to drop. This decline is due to thrust chamber cooling requirements rather than cycle limitations. The decline could be avoided by reducing the fraction of cooling jacket bypass flow, however, significant reduction in the design point bypass flow would reduce the inherent advantages of the split-expander for off-design operation.

The ability to regulate chamber and nozzle coolant flow during engine throttling and high mixture ratio operation is an important benefit of the split-expander cycle. Because of the reduced coolant flow at full thrust, the coolant exit temperature of the split-expander is higher than the full-expander. As will be discussed later, the coolant exit temperature of the full-expander cycle rises as the engine is throttled. By using the split-expander jacket bypass valve (JBV) to increase the percent of coolant flow, the coolant exit temperature can be decreased up to a point during throttling. At some fraction of rated power, 30 percent in the case studied, the JBV is completely closed and the cycle operates like a full-expander. However, because the coolant passages for the split-expander are designed for a lower flow at rated power, the combustor wall stabilizes at a lower temperature during deep throttling, as shown in Figure 9. The full-expander curve shown in that figure is for a case that has not been optimized for cooling at throttled conditions. Lower temperatures can be obtained, but not without some compromise to the design point or increase in control system complexity.

High mixture ratio operation is also enhanced with the split-expander cycle. Using the JBV to increase the percent of coolant flow, the split-expander cycle is able to operate at higher mixture ratio levels with a lower combustor wall temperature. Figure 10 shows the cooler copper tube wall temperature attained with the split-expander cycle compared to the full-expander cycle. The difference in wall temperatures at the design point is because the data are for a throttled 1000 psia condition. For a thrust chamber that has been designed at an O/F of 6.0, 1000 psia is the highest chamber pressure that can be achieved while limiting the maximum hot wall temperature in the chamber to 1060°R (the blanching limit).

The full-expander cycle wall temperatures, which were shown in Figure 10, do not represent an optimized cooling scheme for high mixture ratio operation. This optimization cannot be accomplished, however, without significant cycle penalties at normal operation. Low wall temperatures are essential at high mixture ratio operation. The maximum wall temperature range for prevention of copper oxidation is 1060 to 1260°R without coatings. Use of coatings could reduce the wall temperature, but reliable coatings are not currently available and any coating will reduce the overall heat transfer and the available cycle power.

The split-expander cycle is an untested concept, but is based on fully understood fluid dynamic and thermodynamic principles. The split-expander cycle offers an attractive alternative to the full-expander cycle, meeting STV requirements over the desired thrust range, and greatly simplifying throttling and high mixture ratio operation.

Dual-Expander Cycle

Another variation of the expander cycle is the dual-expander cycle shown in Figure 11. The dual-expander cycle uses all the fuel flow to cool the chamber and drive the fuel turbopump. Oxygen is vaporized in the nozzle or an auxiliary heat exchanger and subsequently used to power the oxidizer turbopump. This cycle offers several advantages over both the full- and split-expander cycles. The oxygen turbopump does not require a special interpropellant seal package between the pump and turbine sections. The availability of gaseous oxygen at all thrust levels, simplifies the task of maintaining combustion stability during throttling. Separate turbine drive fluids simplify mixture ratio control, but add complexity to transient control.

For a given thrust and chamber pressure level, the energy available to the dual-expander cycle is the same as both the full- and the split-expander cycles. The turbopump horsepower requirements and the fuel pressure level are comparable to the full-expander. Because oxygen is less efficient as a turbine working fluid, and there is less flexibility in the split in turbine available energy, the dual-expander cycle is more pressure limited than the other cycles. Figure 12 shows the maximum chamber pressure attainable with the dual-expander cycle for both copper tubular and milled channel combustion chambers.

Above an engine thrust level of approximately 20,000 pounds, the dual-expander cycle cannot achieve chamber pressures above 1200 psia without use of regenerators or internal heat exchangers to provide additional energy to the cycle. While regeneration is possible, the achievable pressure would always be lower than with the same enhancements in a full-expander cycle except at low thrust (below 7500 pounds). At low thrust, expander cycles are limited by the hydrogen temperature out of the cooling jacket; allowing the oxygen to absorb a portion of the energy increases the total energy available within the temperature limit.

Using liquid oxygen to cool the nozzle also provides a source of gaseous oxygen to supply tank pressurant and promote combustion stability during deep throttling, negating the need for a variable area injector or a separate heat exchanger. However, experience has shown that achieving good mixing with gaseous fuel and gaseous oxidizer over a wide range of conditions is difficult, and combustion efficiency may suffer at throttled or high mixture ratio conditions.

Like the split-expander cycle, the dual-expander cycle is an untested concept. The dual-expander cycle differences from the proven full-expander cycle also are based on understood fundamental fluid dynamics and thermodynamics. Technology questions, such as turbine material characterization in gaseous oxygen and control during deep throttling and high mixture ratio operation, need to be addressed. Despite its pressure limits at moderate thrust and more complex operation compared to other expander cycles, the dual-expander remains a candidate for the STV, but primarily at low design thrust levels.

Regenerators and Enhanced Heat Transfer

A higher chamber pressure at higher thrust levels can be achieved through use of a regenerator or enhanced thrust chamber heat transfer in the full-expander and dual-expander cycles. The split-expander cycle can also benefit from enhanced heat transfer, but the lower chamber coolant flows do not provide adequate cooling when greatly enhanced heat transfer is used below 50,000-pounds thrust. The function of a regenerator is to increase the available turbopump power by recovering heat downstream of the turbines and using it to preheat the fuel before cooling the thrust chamber (Figure 13). Enhanced chamber heat transfer increases the available power to the turbines and can be achieved by using finned cooling tubes and ribbed chamber walls.

The upper limit chamber pressure for the full-expander cycle with regeneration is shown in Figure 14. The enhancement of the full-expander cycle with the addition of a regenerator, provides a significant increase in chamber pressure over the entire thrust range.

Cycle Selection

Figure 15 compares the four cycles studied on the basis of copper tubular thrust chamber construction. Figure 16 shows the same comparison using a milled channel copper chamber instead of tubular copper chambers. The full-expander cycle with regeneration produces higher chamber pressure levels, but the higher coolant temperature at the design point aggravates the already difficult job of cooling at throttled or high mixture ratio operation. Enhanced chamber heat transfer accomplishes the same results, but also raises the same concerns. Bypassing the regenerator at off-design conditions partially alleviates this problem.

On the basis of this comparison, the full-expander cycle with regeneration was judged to have the highest chamber pressure capability over the range of thrust considered. The capabilities of the split-expander cycle and full-expander cycle without regeneration were only slightly lower over most of the thrust range. The split-expander cycle was found to have unique advantages for throttled and off-design operation. The full-expander cycle with regeneration and the split-expander cycle were therefore selected as the cycles for developing the parametric data. The split-expander cycle was selected as the baseline for the throttling and high mixture ratio evaluation and the full-expander cycle with regeneration was given secondary consideration.

PARAMETRIC DATA

Engine parametric performance envelope and weight data were generated over the range of design point parameters studied (Table 2). The data are presented in graphical form in Appendix A. All data are for an oxidizer/fuel (O/F) ratio of 6.0.

TABLE 2. — ADVANCED ENGINE STUDY RANGE OF DESIGN POINT PARAMETERS

Vacuum Thrust	7500 to 50,000 lbf
Chamber Pressure	1000 psia to cycle limit
Expansion Ratio	Regenerative terminus to 1200

The upper limit chamber pressures presented in the "cycle selection" section ranged from 1040 to 1940 psia for the various cycles and thrust levels investigated. These limits are not absolute, but rather are relative limits based upon the assumed technology level chosen for this study. Chamber pressures above 2000 psia appear possible for most cycles at most thrust levels (refer to the "Higher Chamber Pressure Requirements" section). However, an upper limit of 2000 psia was selected for developing the parametric data. The following paragraphs describe the methodology used to produce the parametric data.

Performance

In calculating the predicted impulse, an ideal impulse was calculated, and then efficiencies were applied to the ideal impulse to account for various losses. These losses include energy release losses, kinetic losses, divergence losses, and boundary-layer losses.

The ideal predicted impulse was calculated with the NASA one-dimensional chemical equilibrium computer code (ODE) analysis using engine inlet fluid enthalpies. For this analysis, an adiabatic assumption was employed with the control volume encompassing the engine. The propellants enter the control volume at the engine inlet and exit the control volume at the nozzle exit plane. The energy release losses are accounted for by applying a combustion efficiency to the ideal impulse. For this study, a constant combustion efficiency of 0.992 was used which is based on performance expected with tangential swirl injectors. The remaining losses are accounted for by applying a nozzle efficiency to the impulse that has been corrected for energy release losses. For this study, a constant nozzle efficiency of 0.982 was used which is based on a maximum payload truncated bell nozzle.

A comparison was made between the method of performance prediction used in this study and experimental data presented in Table 3 (ref. 1). To make a valid comparison between the predicted and measured performance a few assumptions were made. First, the combustion efficiency (ηC^*) that was calculated from the experimental results was used in calculating the predicted performance rather than the constant combustion efficiency that was used in the study.

Second, typical cryogenic engine inlet propellant conditions were used to calculate the ideal specific impulse instead of using the measured injector inlet conditions (ref. 1). The second assumption was made so as to maintain the validity of the adiabatic assumption that was used in this study. During the experimental performance measurements, the propellants were not maintained at cryogenic conditions, but were heated to ambient temperature by the atmosphere. Also, as the propellants were combusted and expanded, heat was removed by the water jacket that surrounded the throat region and the heat retaining capacity of the metal. The ambient heat addition to, and the water jacket heat removal from, the propellants tend to offset one another, thus validating the adiabatic assumption.

As shown in Figure 17, the comparison shows best agreement around an O/F of 5.0 for the 1030 to 1 area ratio and best agreement around an O/F of 4.0 for the 428 to 1 area ratio. The difference between the predicted and experimental performance at the lower mixture ratios is probably due to the reduction in heat flux at lower mixture ratios while the ambient heat addition remains constant.

The chamber pressure levels from the experimental cases are much lower than those investigated in this study. The study (ref. 1) indicated that a laminar boundary layer assumption showed the best agreement with the experimental data. However, subsequent studies by NASA Lewis (ref. 2) indicate that for higher chamber pressure levels (360 to 2600 psia) a transitional boundary layer occurs. Although no performance data were presented, the transitional boundary layer would probably be detrimental to performance.

The parametric analyses show that thrust level has no effect on vacuum specific impulse while chamber pressure has very little effect, i.e., less than 1 second increase in going from a chamber pressure of 1000 psia to 2000 psia (Figure 18). Area ratio is the biggest driver of specific impulse. An area ratio above 900 would be required to achieve a 480 sec vacuum I_{sp} based on the current data.

TABLE 3. — COMPARISON OF P&W PREDICTED PERFORMANCE $(I_{\rm spc})^{(1)}$ WITH MEASURED PERFORMANCE $(I_{\rm spm})$ FOR THE NASA LEWIS 1030 TO 1 AREA RATIO NOZZLE (REF. 1)

Reading	ΛR	FVAC	PC	O/F	I_{spc}	I_{spm}	I_{spe}/I_{spm}
112	1030.	544.4	360.0	3.84	456.1	468.9	0.973
113	1030.	541.6	356.9	4.36	457.7	460.4	0.994
114	1030.	552.3	360.9	5.08	459.2	451.9	1.016
115	1030.	550.4	355.3	5.49	458.6	449.7	1.020
117	1030.	531.5	356.2	3.19	451.8	473.4	0.954
120	1030.	546.1	355.2	4.30	457.7	466.1	0.982
121	1030.	552.9	360.0	4.11	457.7	473.6	0.966
123	1030.	534.3	355.2	3.19	451.8	481.1	0.939
124	1030.	536.4	361.4	2.78	447.4	481.3	0.929
125	1030.	541.0	354.0	3.74	455.6	477.8	0.953
136	428.	500.9	345.6	3.04	446.7	462.3	0.966
137	428.	531.6	356.8	4.29	453.3	452.6	1.002

Notes:

Engine Envelope

Engine overall lengths and exit diameters were calculated over the range of specified operating conditions. The length of the engine is from the gimbal mount to the nozzle exit plane and consists of three separate lengths. The first length is the distance from the engine gimbal mount to the injector face. This was estimated from layouts of engines of comparable thrust. The length of the combustion chamber, the second length, was held constant at 15 inches. The remainder of the engine length is the distance from the throat to the nozzle exit plane. A maximum payload bell nozzle contour was generated for the chamber pressures, thrust levels, and nozzle expansion ratios of the parametric study. The engine diameter is the exit diameter of the nozzle and is a function of the thrust level, chamber pressure, and expansion ratio.

Weight

Parametric engine weights were generated over the range of specified operating conditions. Historical thrust/weight data were used to estimate these weights with adjustments being made for size, cycle, material, and technology differences. These adjustments included nozzle weights which were calculated as a function of nozzle surface areas. The difference in weight between the split-expander cycle and the full-expander cycle with a regenerator were accounted for by adding or removing components. Analysis of the results, given in Appendix A, show a slight weight advantage for the split-expander cycle when compared to the full-expander cycle with regenerator.

Nozzle Contour Trade-off

The maximum payload bell nozzle contour, used throughout the parametric study, is a rather long nozzle that is used to attain high specific impulse. A sensitivity study was conducted to calculate the effect of nozzle contour on the trade-off of length and weight with performance. Nozzle contours from a minimum length to a maximum performance were examined for a chamber pressure of 1500 psia. The results are presented in Figures

 $^{^{(1)}}$ I_{spc} was calculated using one-dimensional equilibrium (with Engine Inlet Enthalpies), a constant nozzle efficiency (0.982), and the experimentally determined ηC^* .

19 and 20 for the nozzle expansion ratio range of interest and show that going to a shorter nozzle can decrease engine weight by up to 12 percent for a high area ratio (1200 to 1) engine while dropping performance only approximately 1.0 second. However, for a relatively low area ratio (210 to 1) engine, performance decrease by almost 3 seconds when a minimum length nozzle contour is used while engine weight drops by only 3.5 percent.

HIGHER CHAMBER PRESSURE REQUIREMENTS

The upper limit chamber pressures, discussed in the "cycle selection" section, were based on rather conservative assumptions of mid-1990s technology. Selection of the technology level for the cycle comparison was driven by these considerations:

- There appears to be little increase in specific impulse or system performance at chamber pressures above 1000 to 1500 psia.
- Not pushing the system design and associated technology levels to extreme limits provides margin for system flexibility, thereby simplifying throttling and high mixture ratio operation.
- Not pushing system design and technology levels to extreme limits reduces development difficulty (program risk) and helps ensure a high level of reliability.

Higher pressures are possible and may, under some circumstances, be worth the additional complication. A system sensitivity study was conducted to determine which of the cycle parameters in the original study most significantly limited chamber pressure and to show how modifying these variables could extend chamber pressure limits.

The cycle parameters used in the sensitivity study are listed in Table 4. As appropriate, the parameter sensitivity was investigated for both the split-expander cycle and full-expander cycle with regeneration.

TABLE 4. — APPROACHES TO HIGHER CYCLE CHAMBER PRESSURE

Cycle Parameter Improvement	Cycle	Means of Achieving Improvement
Higher Pump Efficiency	Full-Expander With Regenerator Split-Expander	Higher Pump Speed, Reduced Pump Leakage
Higher Turbine Efficiency	Full-Expander With Regenerator Split-Expander	Higher Turbine Speed, Reduced Tip Leakage
Higher Turbine Pressure Ratio	Full-Expander With Regenerator Split-Expander	Higher Pump Discharge Pressure
Coolant Jacket Bypass Flow	Split-Expander	Increase Bypass Flow to Obtain Higher Turbine Inlet Temperature
Regenerator Effectiveness	Full-Expander With Regenerator	Larger, More Effective Regenerator
Increased Thrust Chamber Heat Transfer	Full-Expander With Regenerator Split-Expander	Tubular Chamber, Increased Thrust Chamber Length

The effect of pump efficiency on maximum achievable pressure is shown in Figures 21 and 22 for the two cycles. For the split-expander cycle, an increase of 5 percent in fuel and oxidizer pump efficiency over the baseline cycle pump efficiencies (approximately 65 percent for the fuel pump and 75 percent for the oxidizer

pump) produces an increase of 150 psi in chamber pressure if all other cycle variables are held constant. Fuel pump efficiency improvements could be achieved by developing hydrostatic bearings to operate well above the baseline cycle turbopump speed (125,000 rpm for the fuel pump) or by reducing internal pump leakage below current state-of-the-art projections. For the full-expander cycle with regeneration, a 5 percent increase in pump efficiency provides a 170 psi increase in chamber pressure.

Figures 23 and 24 show the effect of increases in turbine efficiency on chamber pressure. A 5 percent increase in fuel and oxidizer turbine efficiency over the baseline values of 80 to 85 percent produces an 85 psi chamber pressure increase for the slit expander cycle and a 95 psi increase in the full-expander cycle with regeneration.

All of the cycle studies prepared under the study have been based on a turbine pressure ratio of 2.1. Pratt & Whitney experience has shown that a pressure ratio of 2.1 produces a chamber pressure that is near, but slightly below the maximum that can be achieved. However, higher turbine pressure ratios produce only slightly higher chamber pressures at the expense of a very high head rise and discharge pressure requirement on the pump. This trend is shown in Figures 25a and 25b. For the full-expander cycle with regeneration, increasing the turbine pressure ratio to 2.4 increases chamber pressure by only 90 psi, while requiring an increase in pump discharge pressure of 1000 psi. Similarly, for the split-expander cycle, where the maximum chamber pressure is achieved at a turbine pressure ratio of 2.6 the chamber pressure is increased by only 120 psi over the reference value. Yet the balanced cycle at the pressure ratio of 2.6 requires a large increase in fuel pump discharge pressure to 6600 psia compared to the reference pump discharge pressure of 5100 psia.

The split-expander cycle has a unique variable that can be optimized for maximum pressure, i.e., the fraction of the fuel that bypasses the cooling jacket and turbines. All of the unthrottled split expander cycles prepared under this study have been based on 50 percent bypass flow. At low thrust (below approximately 20,000 pounds), the optimum bypass flow for maximum chamber pressure is below 50 percent; however, 50 percent was used as a minimum in the split-expander cycle to provide flexibility for cooling with throttling or high mixture ratio operation. As shown in Figure 26, increasing the jacket bypass flow at 25,000 pounds of thrust would produce a small increase in maximum chamber pressure at the expense of a significant increase in turbine inlet temperature.

In the full-expander cycle with a regenerator, the regenerator heat transfer effectiveness is a design variable that affects available power. A relatively low effectiveness was used in the cycle comparison study because of cooling limitation at low design point thrust and problems associated with throttling with the regenerator in the cycle. At the 25,000-pound thrust level, a higher regenerator effectiveness is feasible and can provide a significant increase in achievable chamber pressure, as shown in Figure 27.

The effect of increased thrust chamber heat transfer was determined for both the split-expander cycle (Figure 28) and the full-expander cycle with regeneration (Figure 29). Chamber heat transfer enhancement with a tubular chamber has been estimated to be 18 percent over a milled channel chamber due to the increased hot side surface area. This is the value used in the cycle comparison study. The actual heat transfer enhancement with tubular chambers could be significantly more than 18 percent. An additional 10 percent increase in the predicted heat transfer (110 of 118 percent) could increase chamber pressure by 80 psia for the split-expander cycle and by 60 psia for the full-expander cycle with regeneration. The chamber heat transfer can also be increased by lengthening the thrust chamber.

The baseline length for the candidate cycle thrust chambers is 12.3 inches. Figures 30 and 31 show the impact on chamber pressure of increasing this length to 16 inches for the split-expander cycle and the full-expander cycle with regeneration, respectively. A 14.7 inch chamber length raises the achievable chamber pressure by 95 psia for the split-expander cycle engine. Above that length, however, the coolant pressure loss increase, associated with the enhanced heaf transfer, exceeds its benefits and results in a lower attainable chamber pressure. The full-expander cycle with regeneration experiences an increase in chamber pressure of 54 psia for the same 14.7 inch long chamber.

Based on the above results of this sensitivity study, an extended chamber pressure limit design was generated for each cycle. Moderate levels of improvement were selected for each parameter to stay with optimistic, but not unrealistic, state-of-the-art technology for the mid-1990s. Table 5 lists the chosen improved cycle parameter values. Tables 6 and 7 present the higher chamber pressure cycle data for the split-expander and the full-expander with regeneration, respectively. The split-expander cycle achieves a chamber pressure of 2044 psia with a resulting pump discharge pressure of 6923 psia and an oxygen turbopump turbine inlet temperature of 1556°R. The full-expander cycle with regeneration attains a 2198 psia chamber pressure with a pump discharge pressure of 7572 psia and a turbine inlet temperature of 957°R.

TABLE 5. — CYCLE PARAMETERS IMPROVEMENT VALUES

	Split-Expander Cycle	Full-Expander Cycle W/Regenerator
Turbine Pressure Ratio	2.2	2.2
Pump Efficiency, %	+5	+5
Turbine Efficiency, %	+5	+5
Jacket Bypass, %	55	N/A
Regenerator Effectiveness, %	N/A	+10
Increased Chamber Length, in.	+2.4	+2.4

TABLE 6. — ADVANCED ENGINE PARAMETRIC STUDY, SPLIT-EXPANDER ENGINE

CA	AMBER PRES	SIME.			
	C ENGINE T			2043.7 25000.	
	TAL ENGINE			52.07	
	L. VAC. IS			480.1	
	ROAT AREA			5.99	
	ZZLE AREA I			1000.0	
	ZZLE EXIT I GINE HIXTUI			87.34	
	A C4	KE KATIU		6.00 0.993	
	AMBER COOL	ANT DP		1365.	
	AMBER COOL			1409.	
NO	ZZLE/CHAMBE	RQ		17209.	
	FMGTA	E STATION	CONDITIONS		
-			444444444		
	• FUEL	SYSTEM C	NOITIONS =		
STATION	PRESS			ENTHALPY	DENSITY
B.P. INLET	18.6	37.4		-107.5	4.37
B.P. EXIT	100.2	38.4	7.44	-103.2	4.39
PURP INLET	100.2	36.4	7.44	-103.2	4.39
IST STAGE EXIT JBV INLET	2760.6	76.5	7.44	65.6	4.42
JBV EXIT	2705.4 2299.6	77.0 80.2	4.0 9 4.09	65.6	4.39
2ND STAGE EXIT	4890.2	113.3	3.35	65.6 221.7	4.14 4.36
PUMP EXIT	6922.8	145.8	3.35	369.5	4.38
TELLI THAIDOO	6853.6	144.3	3.35	369.5	4.36
COOLANT EXIT	5489.2	1555.3		5507.4	0.61
TBV INLET	5433.4	1555.6		5507.4	0.60
OZ TRB INLET	2408.3 5433.4	1577.5 1555.÷	0.17	5507.4	0.28
OZ TRB EXIT	4944 7	1517.7	3.18 3.18	5507.4 5360.4	0.60 0.56
HE TRB INLET	4844.3	1517.7	3.18	5360.4	0.56
M2 TRB EXIT	2571.6	1335.2	3.18	4645.6	0.34
HZ TRB DIFFUSER		1333.7	3.18	4645.6	0.34
HZ BST TRB IN HZ BST TRB OUT	2482.9	1333.7	5.18	4645.6	0.34
HC BST TRB DIFF	2462.3 2457.1	1331.2	5.18	4635.6	0.53
02 BST TRB IN	2452.6	1331.4	3.18 3.18	4635.6 4635.6	0.25
02 BST TRB OUT	2421.5	1332.0	3.18	4630.2	0.33
OC BST TRB DIFF	2420.4	1322.0	3.18	4630.2	0.55
HZ TANK PRESS		1360.9	0.0044	4674.0	0.0026
GOX HEAT EXCH !N GOX HEAT EXCH !U		1342.5	3.34	4674.0	0.32
MIXER HOT IN		1341.7 1341.7	3.34 3.34	4671.0 4671.0	0.52
MIXER COLD IN	2299.6	80.2	4.09	65.6	0.32 4.14
MIXER OUT	2276.4	622.0	7.44	2136.5	0.64
FSOV INLET	2276.4	622.0	7.44	2136.5	0.64
FSOV EXIT	2219.5	622.3	7.44	2136.5	0.62
CHAMBER INJ CHAMBER	2197.3 2843.7	622.4	7.44	2136.5	0.62
STATION			CONDITIONS	4 ENTHALPY	DELECTE
B.P. INLET	16.0	162.7	44.7	61.9	DENSITY 70.99
#.P. EXIT	155.2	165.3	44.7	62.3	70.85
PUMP INLET	135.2	165.3	44.7	62.3	70.85
PUMP EXIT	3309.8	179.8	44.7	72.8	71.68
02 TANK PRESS 0SOV INLET 0SOV EXIT	16.0	400.0	0.074	204.7	0.12
OSOV EXIT	2293.7	178.9 182.8	6.7 6.7	72.8	71.63
OCV INLET	3276.7	178.9	37.9	72.8 72.8	70.12 71.63
OCV EXIT	2295.7	182.8	37.9	72.8	70.12
CHAMBER INJ	2270.7	182.9	44.6	72.8	70.09
CHAMBER	2043.7				
	•	VALVE DAT	'A 4		
VALVE	DELTA P	AREA	FLOH	% BYPASS	
JBV	406.	0.15	4.09	55.00	
TBV	1925.	9.01	0.17	5.00	
FSOV	57.	1.50	7.44		
0CV	*83.	0.21	44.63		
	•	D ROTCELMI	ATA .		
	DELTA P	43EA	FLON		
FUEL	154.	1.15	7.44		
COX	227.	G.53	44.63		

TABLE 6. — ADVANCED ENGINE PARAMETRIC STUDY, SPLIT-EXPANDER ENGINE (Continued)

*******	***********	
	CHINERY PERFORMANCE DATA .	

* HC BOOST TURBINE *	• H2 BOOST PUMP =	
EFFICIENCY (T/T) 0.917	EFFICIENCY 0.804	
EFFICIENCY (T/S) 0.688		
SPEED (RPM) 41220.	SPEED (RPM) 41228.	
MEAN DIA (IN) 2.18		
EFF AREA (IN2) 1.78		
U/C (ACTUAL) 0.553 MAX TIP SPEED 480.		
STAGES I		
GAPMA 1.43		
PRESS RATIO (T/T) 1.01	FLOH COEF 0.201	
PRESS RATIO (T/S) 1.01		
HORSEPOHER 45. EXIT MACH MUMBER 0.06		
SPECIFIC SPEED 113.64		
SPECIFIC DIMETER 0.76		

= H2 TURBINE =	я Н2 РОМР н наменения	
	STAGE OHE STAGE THO STAGE THRE	F

EFFICIENCY (T/T) 0.825	EFFICIENCY 0.440 0.575 0.581	
EFFICIENCY (T/S) 0.787		
SPEED (RPH) 125000.	SPEED (RPM) 125000. 125000. 125000.	
HORSEPOHER : 3218. HEAN DIA. (IN) 3.30	SS SPEED 11344.	
EFF AREA (IN2) 0.18		
U/C (ACTUAL) 0.426		
MAX TIP SPEED 1871.		
STAGES 2		
GAMMA 1.43	HEAD COEF 0.552 0.530 0.508	
PRESS RATIO (T/T) 1.89		
PRESS RATIO (T/S) 1.96 EXIT MACH MUMBER 0.13	DIAMETER RATIO 0.306 BEARING DN 3.00E+06	
SPECIFIC SPEED 24.37		
SPECIFIC DIAMETER 2.39	347 DIACISK 24.00	
*********	**********	
■ 02 BOOST TURBINE ■	• 02 BOOST PUMP •	
******************	************	
EFFICIENCY (T/T) 0.912 EFFICIENCY (T/S) 0.803	EFFICIENCY 0.803 HORSEPOMER 25.	
SPEED (RPM) 11044.	SPEED (RPM) 11044.	
MEAN DIA (IN) 5.99	S SPEED 3026.	
EFF AREA (IN2) 2.45	H€AD (FT) 242.	
U/C (ACTUAL) 0.553	DIA. (IN) 2.73	
HAX TIP SPEED 310.	TIP SPEED 132.	
STAGES 1 GAMMA 1.43	VOL. FLOH 283. HEAD COEF 0.450	
PRESS RATIO (T/T) 1.00	FLOH COEF 0.200	
PRESS RATIO (T/S) 1.01		
HORSEPOHER 25.		
EXIT MACH MUMBER 0.03		
SPECIFIC SPEED 54.38		
SPECIFIC DIAMETER 1.50		
*********	444644444	
. OZ TURBINE .	4 02 PUMP 4	
*********	44444444	
EFFICIENCY (T/T) 0.882	EFFICIENCY 0.785	
EFFICIENCY (T/S) 0.839	HORSEPOHER 662.	
SPEED (RPH) 72056.	SPEED (RPM) 72054.	
HORSEPOHER 662. MEAN DIA (IN) 3.30	SS SPEED 23942. S SPEED 1690.	
MEAN DIA (IN) 3.30 EFF AREA (IN2) 0.26	3 3FEED 1670. H€AD (FT) 6375.	
U/C (ACTUAL) 0.541	DIA. (IN) 2.18	
MAX TIP SPEED 1086.	TIP SPEED 686.	
STAGES 2	VOL. FLOH 288.	
GAMMA 1.43	HEAD COEF 0.436	
PRESS RATIO (T/T) 1.12	FLOH COEF 0.148	
PRESS RATIO (T/S) 1.12	DIAMETER RATIO 0.678	
EXIT MACH NUMBER 0.06		
***************************************	95121NG DN 1,445.06	
SPECIFIC SPEED 37.64 SPECIFIC DIAMETER 2.05	SCARING DN 1.44€+06 Scaft Diameter 20.00	

TABLE 7. — ADVANCED ENGINE PARAMETRIC STUDY, FULL-EXPANDER ENGINE WITH A HYDROGEN REGENERATOR

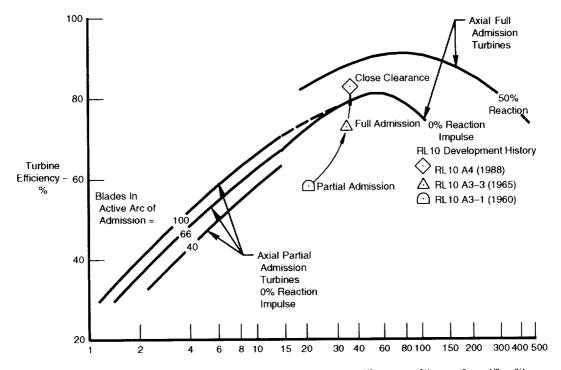
			CE PARAMET		
	********	********		******	
C	HAMBER PRES	SURE		2198.0	
	AC ENGINE TO			25000.	
	OTAL ENGINE EL. VAC. ISI			52.07 480.1	
11	HROAT AREA			5.57	
	DZZLE AREA I DZZLE EXIT I			1000.0	
	STINE MIXTUR			84.24 6.00	
	TA C*			0.993	
	HAMBER COOL			1640. 628.	
	ZZLE/CHANGE			17055.	
	EVETA	E STATION	CONDITIONS		
	4 5160	SVETEN C	ONDITIONS (
STATION	PRESS		FLON		DENSITY
B.P. INLET	18.6	37.4	7.45	-107.5	4.37
B.P. EXIT PUMP INLET	100.9 100.9	38.4	_	-103.2	4.39
IST STAGE EXIT		38.4 72.8	7.45 7.45	-103.2 51.2	4.39
2ND STAGE EXIT		105.2		202.8	4.45
PUMP EXIT	7572.0	135.3		351.8	4.66
COLD REGEN IN	7496.3 7421.4	135.9 328.4			4.63
COOLANT INLET	7421.4	328.4	7.45 7.45	1107.6	2.82 2.82
COOLANT EXIT	5780.9	956.7	7.45	5398.4	0.99
TBV INLET	5723.1	957.1	0.37	3398.4	0.98
02 TRB INLET	2534.9 5723.1	977.9 957.1	0.57 7.07	3398.4 3398.4	0.46
OZ TRB EXIT	5254.2	939.5	7.07	3327.0	0.98 0.92
H2 TRB INLET H2 TRB EXIT	5254.2	939.5	7.07	\$327.0	0.92
	2724.4	820.0 820.6	7.07 7.07	2848.1	0.58
H2 TRB DIFFUSER H2 BST TRB IN H2 BST TRB OUT	2612.9	820.6	7.07	2848.1 2848.1	0.56 0.56
		819.6	7.07	2843.6	0.55
H2 BST TRB DIFF OZ BST TRB IN		819.6	7.07	2843.6	0.55
02 BST TRB OUT	2557.8	819.8 819.2	7.07 7.07	2843.6 2841.1	0.55
02 BST TRB DIFF	2549.6	819.2	7.07	2841.1	0.55 0.55
HZ TANK PRESS	18.6	843.1	0.0071	2869.0	0.0042
GOX HEAT EXCH IN	1 2536.9 IT 2524 2	827.1 824.8	7.44 7.44	2869.0	0.54
GOX HEAT EXCH OU HOT REGEN IN	2524.2	826.8	7.44	2867.6 2867.6	0.54 0.54
HOT REGEN EX	2448.5	614.0	7.44	2111.1	0.69
FSOV INLET FSOV EXIT	2448.5 2387.2	614.0	7.44	2111.1	0.69
CHAMBER INJ	2363.4	614.5 614.5	1.44 1.44	2111.1 2111.1	0.67
CHAMBER	2198.0				****
	• OXYG	EN SYSTEN	CONDITIONS	: =	
STATION	PRESS	TEMP	FLON	ENTHALPY	DENSITY
B.P. INLET B.P. EXIT	16.0	162.7	44.7	61.9	70.99
PINE THE ET	135.2 135.2	165.3 165.3	44.7 44.7 44.7	62.3 62.3	70.84 70.84
PUMP EXIT	3559.7	165.3 179.9	44.7	73.6	71.73
02 TANK PRESS 0SOV INLET		400.0	0.076	204.7	0.12
OSOV EXIT	3524.l 2466.8	180.0 184.2	6.7 6.7	73.6 73.6	71.67
OCV INLET	3524.1	180.0	37.9	73.6	70.07 71.67
OCV EXIT	2466.8	184.2	37.9	73.6	70.07
CHAMBER INJ CHAMBER	2442.2 2198.0	184.3	44.6	75.6	70.05
	•	VALVE DAT	A 4		
VALVE	DELTA P	AREA	FLON	1 SYPASS	
TBV FSOV	3186.	0.01	0.57	5.00	
OCV OCV	61. 1057.	1.67 0.21	7.44		
		NUECTOR D			
		mutelium ()	A1A *		
INJECTOR	DELTA P	AREA	FLON		
FUEL LOX	165. 244.	1.06 0.51	7.44		
- -		4.51	~~.43		

TABLE 7. — ADVANCED ENGINE PARAMETRIC STUDY, FULL-EXPANDER ENGINE WITH A HYDROGEN REGENERATOR (Continued)

	VERY PERFORMANCE DATA +	
*****************	***************************************	• • • • • •
* 3H18RUT T2008 2H *	+ H2 800ST	
EFFICIENCY (T/T) 0.876	EFFICIENCY	0.804
EFFICIENCY (T/T) 0.876 EFFICIENCY (T/S) 0.476	EFFICIENCY HORSEPONER	46.
SPEED (RPH) 41367. ÆAN DIA (IN) 1,44	SPEED (RPM) S SPEED	
EFF AREA (IN2) 5.35	HEAD (FT)	\$045. 2701.
N/C (ACTUAL) 0.545	HEAD (FT) DIA. (IN)	2.45
MAK TIP SPEED 347. STAGES 1	TIP SPEED VOL. FLON	741
CAPMA 1.41 PRESS RATIO (T/T) 1.01 PRESS RATIO (T/S) 1.01	HEAD COEF	0.450
PRESS RATIO (T/T) 1.01	FLOH COSF	0.201
HORSEPOMER 46.		
EXIT MACH NUMBER 0.08 SPECIFIC SPEED 150.00		
SPECIFIC DIAMETER 0.54		
* HZ TURBINE *	* HZ PUR	
********	*******	•••
	STAGE ON	E STAGE THO STAGE THREE
EFF[CIENCY (T/T) 0.866	EFFICIENCY 8.673	
EFFICEDICY (T/S) 0.818 SPEED (RPH) 125000.	HORSEPOHER 1625.	1598. 1569. 125000. 125000.
HORSEPONER 4792.	SPEED (RPH) 125800. SS SPEED 11284.	125000. 125000.
EFF (CLENCY (T/S) 0.818 SPEED (RPH) 125000. HORSEPOWER 4792. REAN DIA. (IN) 2.80 EFF AMEA (IN2) 0.29 U/C (ACTUAL) 0.442 MAX TIP SPEED 1632. STAGES 2	S SPEED 714.	716. 717.
U/C (ACTUAL) 0.442	HEAD (FT) 80814. DIA. (IN) 3,99	
MAX TIP SPEED 1632.	TIP SPEED 2177.	2177. 2177.
STAGES 2 GAMMA 1.41	VOL. FLON 758.	735. 717.
PRESS RATIO (T/T) 1.93	PLOH COEF 8.891	
PRESS RATIO (T/S) 2.01	DIAMETER RATIO 8.316 BEARING DN 3.80E+86	
PRESS RATIO (T/S) 2.01 EXIT MACH HUMBER 0.16 SPECIFIC SPEED 38.32 SPECIFIC DIAMETER 1.66	SHAFT DIAMETER 24.40	
SPECIFIC DIAMETER 1.64		
*************	*1600100000	
- 02 900ST TURBINE +	# 02 \$00ST (
EFFICIENCY (T/T) 0.920	FFF ICIENCY	0.805
EFFICIENCY (T/S) 0.719	EFF (CLENCY HORSEPOHER SPEED (RPH) S SPEED	25.
SPEED (RPM) 11044,	SPEED (NPM)	11044.
EFF AREA (IN2) 4.76		
	PEAU (F1)	242.
MEAN DIA (IN) 6.11 EPF AREA (IN2) 6.76 U/C (ACTUAL) 0.565	MEAD (FT) DIA. (IN)	2.73
MAK TEP SPEED 235. STAGES 1	TEP SPEED	132.
MAK TIP SPEED 235. STAGES 1 EARMA 1.41	TEP SPEED	132.
MAK TIP SPEED 235. STAGES 1 EARMA 1.41	TEP SPEED	132.
PART TIP SPEED 235. STAGES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/S) 1.00 HORSEPOWER 25.	TEP SPEED	132.
PART TIP SPEED 235. STAGES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/S) 1.00 HORSEPOWER 25.	TEP SPEED	132.
PART TIP SPEED 235. STAGES 1 GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.00 PRESS RATIO (T/S) 2.5.	TEP SPEED	132.
MAX T(P SPEED 255. STAGES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/S) 1.00 HORSEPOWER 25. EXIT HAD MANUER 0.03 SPECIFIC SPEED 103.84 SPECIFIC DIAMETER 0.84	T (P. SPEED) VOL. FLOW HEAD COOPF FLOW COOPF	112. 203. 0.450 0.200
MAX T(P SPEED 255. STACES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/S) 1.00 HORSEPOACE 25. EXIT HACH MARRER 0.03 SPECIFIC SPEED 105.84 SPECIFIC DIANETER 0.84	TEP SPEED	112. 283. 0.450 0.200
MAX T(P SPEED 255. STAGES 1 GAMMA 1.41 MESS RATIO (T/T) 1.00 MESS RATIO (T/S) 1.00 MESSPONER 25. EXIT MAD MARBER 0.03 SPECIFIC SPEED 103.86 SPECIFIC DIAMETER 0.84	TIP SPEED VOL. FLOW HEAD CORP FLOW CORP FLOW CORP	112. 203. 0.450 0.200
MAX T(P SPEED 255. STACES 1 GAMMA 1.41 MESS RATIO (T/T) 1.00 MESS RATIO (T/S) 1.00 MESSPONER 25. EXIT MACH MUMBER 0.03 SPECIFIC SPEED 103.84 SPECIFIC DIAMETER 0.84 ***********************************	T (P SPEED) VOL. FLOM HEAD CODE FLOM CODE FLOM CODE ***********************************	112. 203. 0.450 0.200
MAX T(P SPEED 255. STACES 1 GAPPIA 1.41 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/S) 1.00 PMESS	TIP SPEED VOL. FLOM HEAD CORP FLOM CORP FLOM CORP ###################################	132. 203. 0.450 0.200
MAX T(P SPEED 255. STACES 1 GAPPIA 1.41 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/S) 1.00 PMESS	TEP SPEED VOL. FLON HEAD CORP FLON CORP FLON CORP # 02 PUMP ###################################	132. 203. 0.450 0.200 0.200
MAX TIP SPEED 255. STACES 1 GAPPIA 1.41 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/T) 0.816 SPECIFIC DIAMETER 0.84 ***********************************	TEP SPEED VOL. FLON HEAD CORP FLON CORP	132. 283. 0.450 0.200 0.701 0.701 715. 73901. 24501. 1440. 4872.
MAX T(P SPEED 255. STACES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/S) 1.00 PMESS	TIP SPEED VOL. FLON HEAD CODE FLON CODE FLON CODE ***********************************	132. 203. 0.450 0.200 0.701 715. 73901. 24501. 1440. 4472. 2.19
MAX T(P SPEED 255. STACES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/S) 1.00 SPECIFIC SPEED 105.86 SPECIFIC DIAMETER 0.86 ###################################	TEP SPEED VOL. FLON HEAD CODE FLON CODE FLON CODE ***********************************	132. 203. 0.450 0.200 0.200 0.78E 715. 73781. 24581. 1460. 4872. 2.19 700.
MAX T(P SPEED 255. STACES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/S) 1.00 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/S) 1.00 PMESS	TE SPEED VOL. FLOM HEAD CODE FLOM CODE FLOM CODE # 02 PARP ###################################	132. 283. 0.450 0.200 0.701 715. 75981. 2450. 4872. 2.19 706.
MAX T(P SPEED 255. STACES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.00 SPECIFIC SPEED 103.86 SPECIFIC DIAMETER 0.84 ***********************************	TIP SPEED VOL. FLON HEAD CODE FLON CODE FLON CODE ***********************************	132. 283. 0.450 0.200 0.701 715. 73901. 24501. 1640. 6072. 2.19 700. 280. 0.462
MAX T(P SPEED 255. STAGES 1 GAMMA 1.41 MESS RATIO (T/T) 1.00 MESS RATIO (T/S) 1.00 MESS RATIO (T/T) 0.00 MESS RATIO (T/T) 0.00 MESS RATIO (T/T) 0.00 MESS RATIO (T/T) 0.00 MESS RATIO (T/T) 1.00 MESS	TEP SPEED VOL. FLON HEAD COEF FLON COEF FLON COEF FLON COEF FRED CENCY HORSEPONED SPEED (RPM) SS SPEED HEAD (FT) DIA. (IM) TEP SPEED VOL. FLOM HEAD COEF FLOM COEF FLOM COEF GLANTER RATIO BEARING DM	132. 283. 0.450 0.200 0.781 715. 73981. 24581. 1440. 4872. 2.19 708. 280. 0.472
MAX T(P SPEED 255. STACES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.00 SPECIFIC SPEED 103.86 SPECIFIC DIAMETER 0.84 ***********************************	TIP SPEED VOL. FLON HEAD CODE FLON CODE FLON CODE ***********************************	132. 283. 0.450 0.200 0.781 715. 73981. 24581. 1440. 4872. 2.19 708. 280. 0.472
MAX T(P SPEED 255. STAGES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.00 SPECIFIC SPEED 105.86 SPECIFIC SPEED 105.86 SPECIFIC DIAMETER 0.86 ###################################	TEP SPEED VOL. FLON HEAD COEF FLON COEF FLON COEF FLON COEF FRED CENCY HORSEPONED SPEED (RPM) SS SPEED HEAD (FT) DIA. (IM) TEP SPEED VOL. FLOM HEAD COEF FLOM COEF FLOM COEF GLANTER RATIO BEARING DM	132. 283. 0.450 0.200 0.781 715. 73981. 24581. 1440. 4872. 2.19 708. 280. 0.472
MAX TIP SPEED 255. STACES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/S) 1.00 PMESS RATIO (T/S) 1.00 SPECIFIC SPEED 105.86 SPECIFIC SPEED 0.86 SPECIFIC DIAMETER 0.86 EFFICIENCY (T/T) 0.896 SPECIFIC (T/S) 0.806 SPECIFIC (T/S) 0.806 SPECIFIC (T/S) 0.806 SPECIFIC (T/S) 0.408 UC (ACTUAL) 0.408 UC (ACTUAL) 0.408 UC (ACTUAL) 0.408 UC (ACTUAL) 1.00 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/T) 1.00 EXIT MACH HUMBER 0.008 SPECIFIC SPEED 45.20 SPECIFIC DIAMETER 1.56	TE SPEED VOL. FLON HEAD CODE FLON CODE FLON CODE ***********************************	132. 283. 0.450 0.200 0.781 715. 73981. 24581. 1440. 4872. 2.19 708. 280. 0.472
MAX T(P SPEED 255. STAGES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/S) 1.00 PMESS RATIO (T/S) 1.00 PMESS RATIO (T/S) 10.86 SPECIFIC SPEED 105.86 SPECIFIC DIAMETER 0.86 ###################################	TE SPEED VOL. FLON HEAD CODE FLON CODE FLON CODE FLON CODE FREED	132. 283. 0.450 0.200 0.781 715. 73981. 24581. 1440. 4872. 2.19 708. 280. 0.472
MAX T(P SPEED 255. STACES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.00 SPECIFIC SPEED 103.86 SPECIFIC SPEED 103.86 SPECIFIC DIAMETER 0.84 ***********************************	TIP SPEED VOL. FLOM HEAD CODE FLOM CODE FLOM CODE FLOM CODE FRICTION FRICTION STATE SPEED STATE OTA TIP SPEED VOL. FLOM HEAD CODE FLOM CODE FLOM CODE FLOM CODE OTAMETER RATIO BEARING DH SHAFT DIAMETER	132. 283. 0.450 0.200 0.781 715. 73981. 24581. 1440. 4872. 2.19 708. 280. 0.472
MAX T(P SPEED 255. STAGES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/T) 1.00 HORSEPORER 25. EXIT HAD MANBER 0.03 SPECIFIC SPEED 105.84 SPECIFIC SPEED 105.84 SPECIFIC DIANETER 0.84 SPECIFIC DIANETER 1.84 SPEED (RPHI 737911. HORSEPORER (T/T) 0.896 SPEED (RPHI 737911. HORSEPORER 715. REAN DIA (IN) 2.80 EFF AREA (IN2) 0.40 MAX TIP SPEED 770. STAGES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.09 PMESS RATIO (T/T) 1	TE SPEED VOL. FLOM HEAD COEF FLOM COEF FLOM COEF FLOM COEF ***********************************	132. 283. 0.450 0.200 0.781 715. 73981. 24581. 1440. 4872. 2.19 708. 280. 0.472
MAX T(P SPEED 255. STACES 1 GAMMA 1.41 MESS RATIO (T/T) 1.00 SPECIFIC SPEED 103.86 SPECIFIC DIAMETER 0.86 SPECIFIC DIAMETER 0.86 SPECIFIC DIAMETER 7.15. MESS MESS (T/T) 0.806 SPEED (RPH) 73981. MORSEPOMER 715. MEAN 01A (IN) 2.60 CFF AREA (IN2) 0.48 MAX TIP SPEED 970. STACES 1.41 MAX TIP SPEED 970. STACES 1.41 MESS RATIO (T/T) 1.09 MESS RATIO (T/T) 1.09 MESS RATIO (T/T) 1.09 MESS RATIO (T/T) 1.10 EXIT MACH NUMBER 0.08 SPECIFIC SPEED 45.20 SPECIFIC DIAMETER 1.56 RECENERATOR DA ***********************************	TE SPEED VOL. FLOM HEAD CODE FLOM CODE FLOM CODE FLOM CODE FROM CODE FROM CODE SPEED (RMM) SS SPEED S SPEED HEAD (FT) DIA. (IN) TE SPEED VOL. FLOM HEAD CODE FLOM CODE FLOM CODE FLOM CODE FLOM CODE OTAMETER RATIO BEARING DH SHAFT DIAMETER	132. 283. 0.450 0.200 0.781 715. 73981. 24581. 1440. 4872. 2.19 708. 280. 0.472
MAX T(P SPEED 255. STAGES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.00 PMESS RATIO (T/S) 1.00 PMESS RATIO (T/S) 105.86 SPECIFIC SPEED 105.86 SPECIFIC DIAMETER 0.86 ###################################	TIP SPEED VOL. FLOW HEAD CODE FLOW CODE FLOW CODE FLOW CODE ***********************************	132. 283. 0.450 0.200 0.781 715. 73981. 24581. 1440. 4872. 2.19 708. 280. 0.472
MAX TIP SPEED 255. STACES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.00 SPECIFIC SPEED 103.86 SPECIFIC DIAMETER 0.84 ***********************************	TE SPEED VOL. FLOM HEAD CODE FLOM CODE FLOM CODE FLOM CODE FROM CODE FROM CODE SPEED (RMM) SS SPEED S SPEED HEAD (FT) DIA. (IN) TE SPEED VOL. FLOM HEAD CODE FLOM CODE FLOM CODE FLOM CODE FLOM CODE OTAMETER RATIO BEARING DH SHAFT DIAMETER	132. 283. 0.450 0.200 0.781 715. 73981. 24581. 1440. 4872. 2.19 708. 280. 0.472
MAX T(P SPEED 255. STAGES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.00 SPECIFIC SPEED 105.86 SPECIFIC SPEED 105.86 SPECIFIC DIAMETER 0.84 ***********************************	TE SPEED VOL. FLOM HEAD CODE FLOM CODE FLOM CODE FLOM CODE FROM CODE FROM CODE SPEED (RMM) SS SPEED S SPEED HEAD (FT) DIA. (IN) TE SPEED VOL. FLOM HEAD CODE FLOM CODE FLOM CODE FLOM CODE FLOM CODE OTAMETER RATIO BEARING DH SHAFT DIAMETER	132. 283. 0.450 0.200 0.781 715. 73981. 24581. 1440. 4872. 2.19 708. 280. 0.472
MAX TIP SPEED 255. STACES 1 GAMMA 1.41 PMESS RATIO (T/T) 1.00 SPECIFIC SPEED 103.86 SPECIFIC DIAMETER 0.84 ***********************************	TE SPEED VOL. FLOM HEAD CODE FLOM CODE FLOM CODE FLOM CODE FROM CODE FROM CODE SPEED (RMM) SS SPEED S SPEED HEAD (FT) DIA. (IN) TE SPEED VOL. FLOM HEAD CODE FLOM CODE FLOM CODE FLOM CODE FLOM CODE OTAMETER RATIO BEARING DH SHAFT DIAMETER	132. 283. 0.450 0.200 0.781 715. 73981. 24581. 1440. 4872. 2.19 708. 280. 0.472

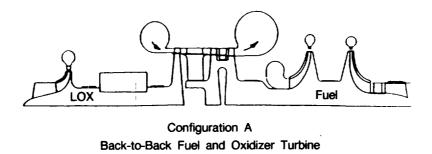
ENGINE-VEHICLE INTERFACES

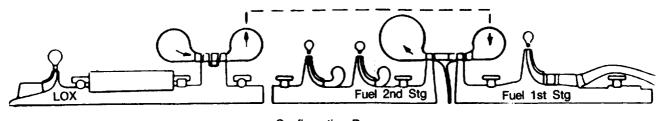
The identified engine-vehicle interfaces are listed in Table 8. Redundant electrical and data connections are suggested for reliability. Each instrumentation cable will carry multiple channels. The number of channels will be determined based on the architecture of the engine-vehicle control interface.


TABLE 8. — ENGINE-VEHICLE INTERFACES

Description	No. of Interfaces	
Gimbal Bearing	1	
Gimbal Actuator	2	
Engine Oxidizer Inlet, Liquid Oxygen	1	
Engine Fuel Inlet, Liquid Hydrogen	1	
Fuel Tank Pressurant, Gaseous Hydrogen	1	
Oxidizer Tank Pressurant, Gaseous Oxygen	1	
Electrical Power	2 ⁽¹⁾	
Pneumatic	TBD (0 or 1)	
Data	2 ⁽¹⁾	
Notes: (1) Required for redundancy		

The gimbal mount is the primary engine attachment to the vehicle and provides the capability to gimbal the engine through two gimbal actuator attachment points located 90 degrees apart on the engine. The engine is configured with an extendable nozzle to reduce engine storage length. The engine envelope and mechanical interfaces are depicted in Figure 32. The engine lengths (x) and diameter (y) correspond to the dimensions given in Appendix A. The stored length (x') is one-half the total engine length plus 6 to 10 inches depending on engine thrust and undefined vehicle interface requirements.


REFERENCES


- 1. Smith, T.A.; Pavli, A.J.; and Kacynski, K.J.: "A Comparison of Theoretical and Experimental Thrust Performance of a 1030:1 Area Ratio Rocket Nozzle at a Chamber Pressure of 350 psia." NASA TP-2725, 1987.
- 2. Smith, T.A.: "Boundary Layer Development as a Function of Chamber Pressure in the NASA Lewis 1030:1 Area Ratio Rocket Nozzle." NASA TM-100917, 1988, AIAA-88-3301.

Turbine Stage Specific Speed, N_s Dimensional = N(Q_{EXIT})^{1/2}/(Head_{Ad.})^{3/4}; rpm(ft³/sec)^{1/2}/(ft)^{3/4}

Figure 3. Turbine Efficiency Comparison

Configuration B

Back-to-Back Fuel Turbine With Separate Oxidizer Turbine

Figure 4. Back-to-Back Turbine Configurations

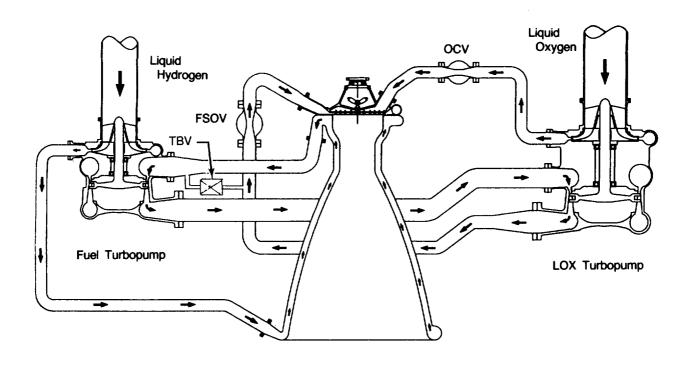


Figure 5. Full-Expander Cycle

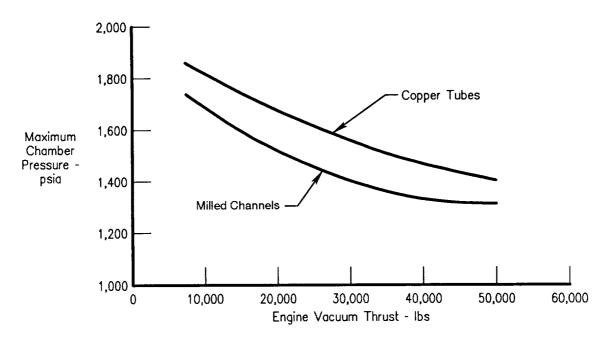


Figure 6. Full-Expander Cycle Achievable Chamber Pressure

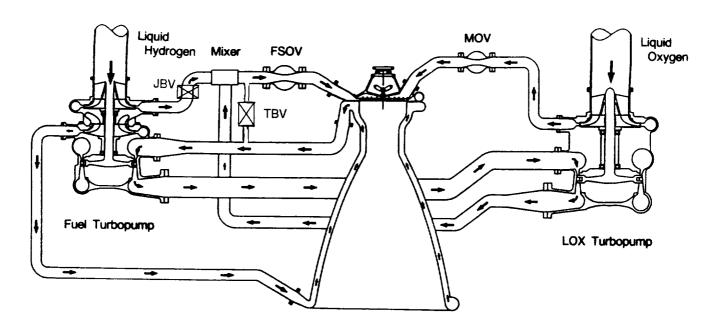


Figure 7. Split-Expander Cycle

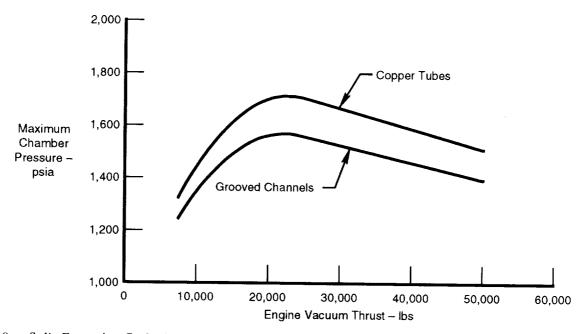


Figure 8. Split-Expander Cycle Achievable Chamber Pressure

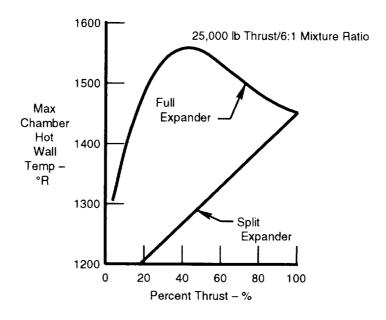


Figure 9. Thrust Chamber Wall Temperatures During Throttling

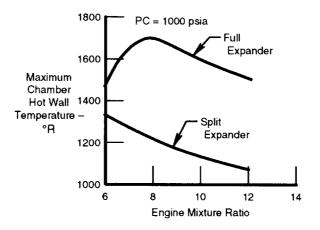


Figure 10. Thrust Chamber Wall Temperature as a Function of High Mixture Ratio

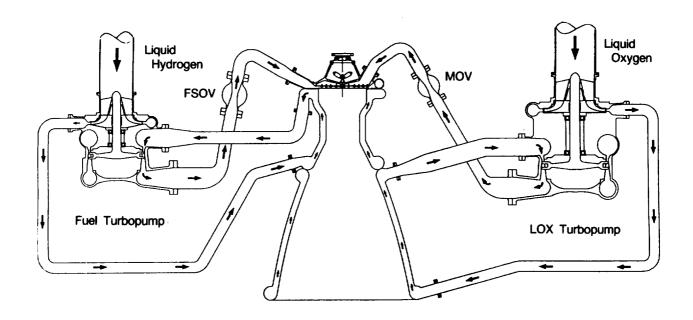


Figure 11. Dual-Expander Cycle

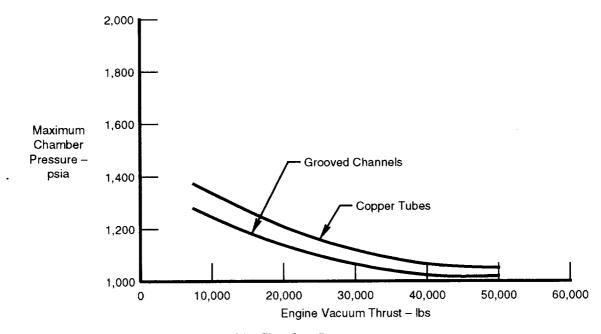


Figure 12. Dual-Expander Cycle Achievable Chamber Pressure

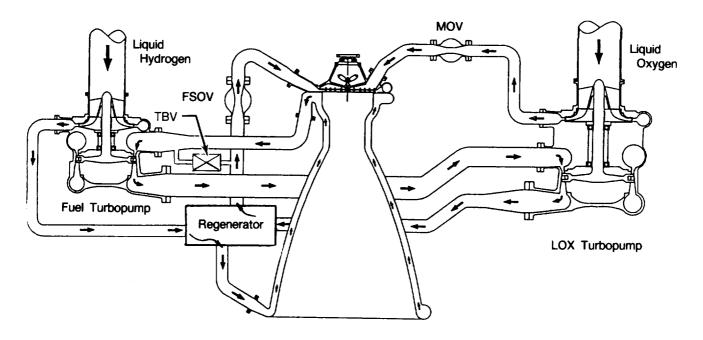


Figure 13. Full-Expander Cycle With Regeneration

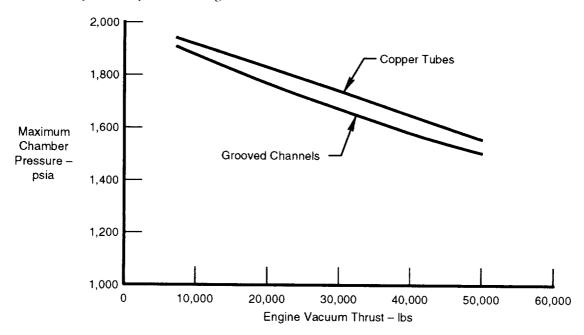


Figure 14. Full-Expander Cycle With Regeneration Achievable Chamber Pressure

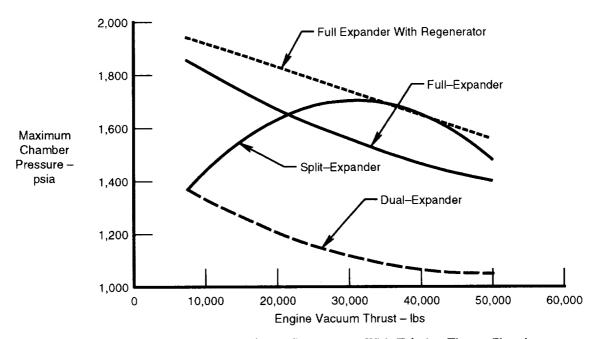


Figure 15. Full, Split, Dual, and Regenerator Cycle Comparison With Tubular Thrust Chambers

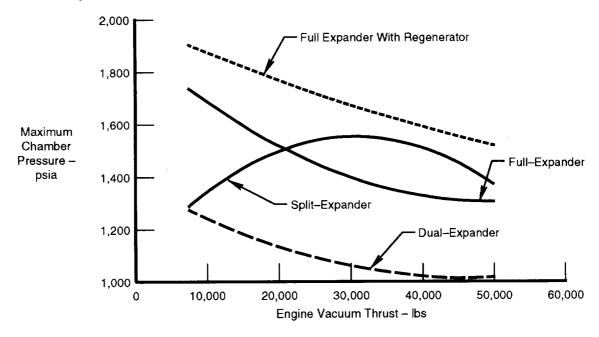


Figure 16. Full, Split, Dual, and Regenerator Cycle Comparison With Milled Channel Thrust Chambers

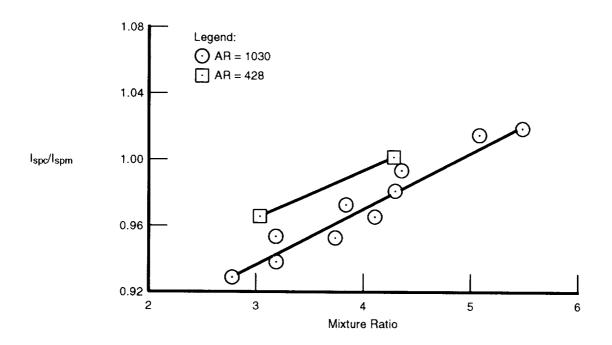


Figure 17. Comparison of Predicted Performance (I_{spc}) With Measured Performance (I_{spm}) for the NASA Lewis High Area Ratio Nozzle (Data From Ref 1)

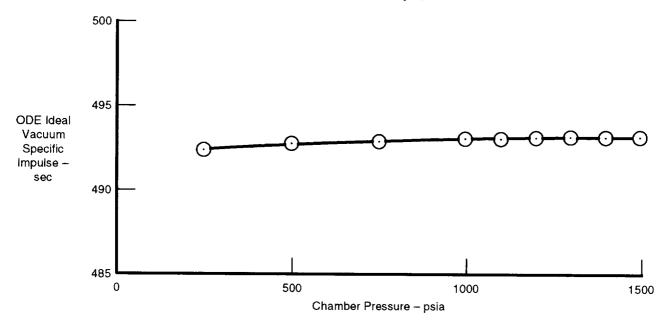


Figure 18. Pratt & Whitney — Rocket Performance Ideal Impulse Versus P_c for AR = 1000:1, O/F = 6

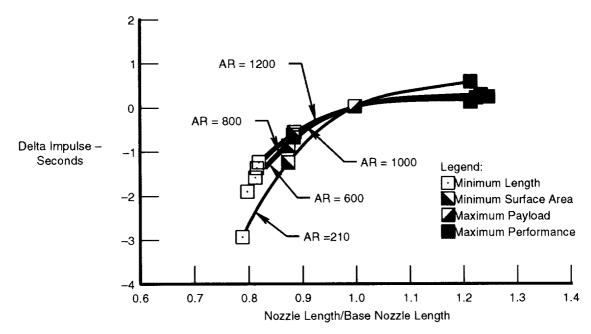


Figure 19. Bell Nozzle Truncation Performance — Length Sensitivity Based on a Maximum Payload Truncation; $P_c = 1500$, H_2 - O_2 , O/F = 6.0

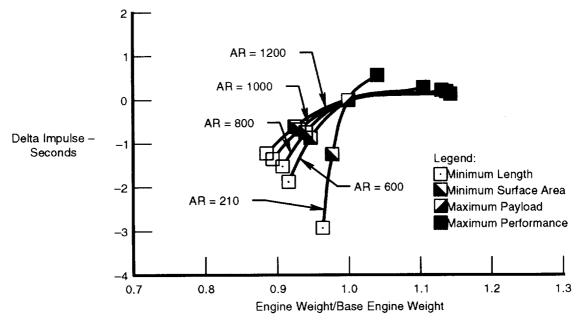


Figure 20. Bell Nozzle Truncation Performance — Weight Sensitivity Based on a Maximum Payload Truncation; $P_c = 1500$, H_2 - O_2 , O/F = 6.0

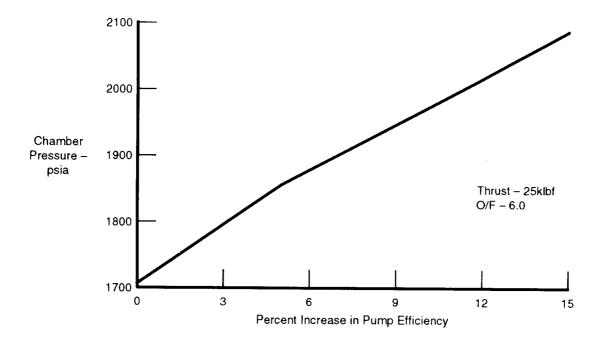


Figure 21. Advanced Split-Expander Cycle P_c Improvement With Increased Pump Efficiency

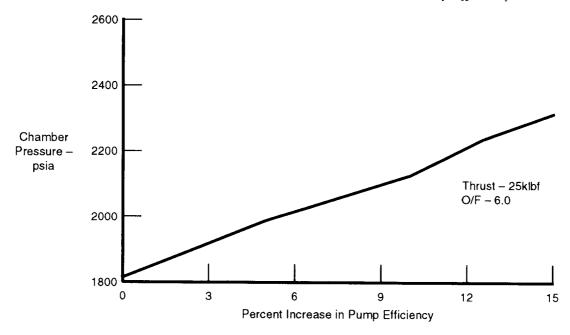


Figure 22. Advanced Full Expander With Regenerator Cycle P_c Improvement With Increased Pump Efficiency

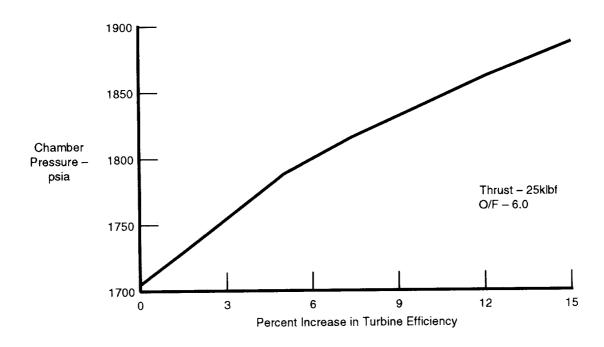


Figure 23. Advanced Split-Expander Cycle P_c Improvement With Increased Turbine Efficiency

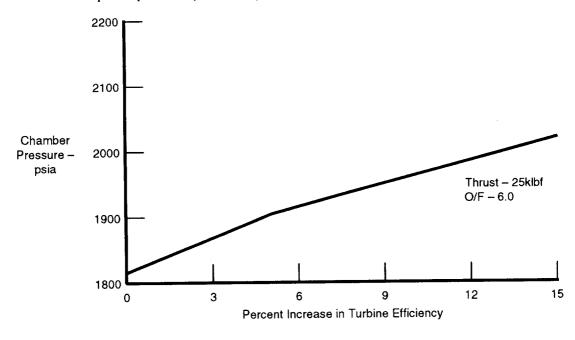


Figure 24. Advanced Full Expander With Regenerator Cycle Pc Improvement With Increased Turbine Efficiency

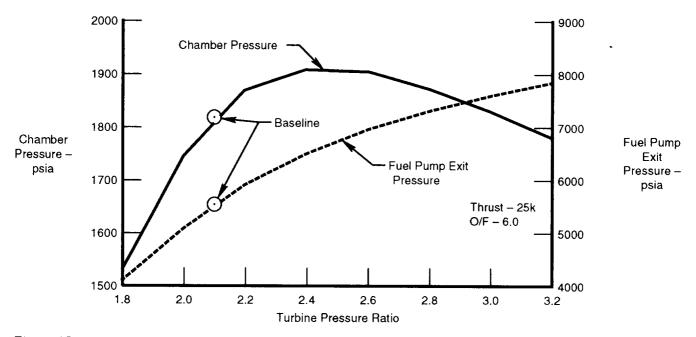


Figure 25a. Advanced Full Expander With Regenerator Cycle P_c Improvement With Increased Turbine Pressure Ratio

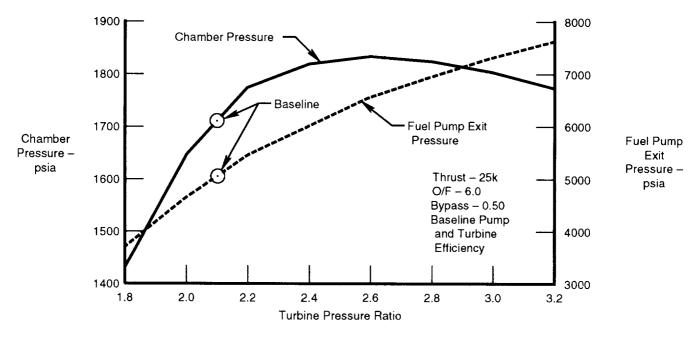


Figure 25b. Advanced Split-Expander With Regenerator Cycle P_c Improvement With Increased Turbine Pressure Ratio

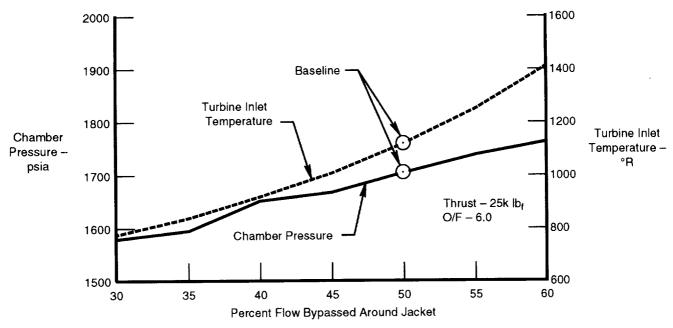


Figure 26. Advanced Split-Expander Cycle Pc Improvement With Increased Bypass Flow Around Jacket

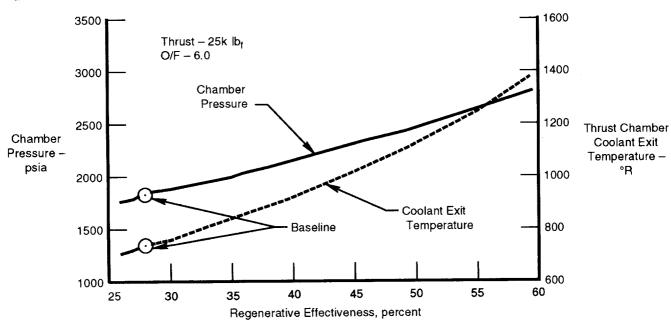


Figure 27. Advanced Full Expander With Regenerator Cycle P_c Improvement With Increased Regenerator Effectiveness

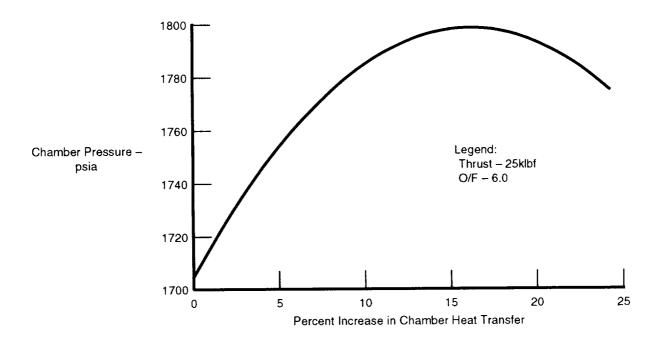


Figure 28. Advanced Split-Expander Cycle P_c Improvement Due to Increased Chamber Heat Transfer

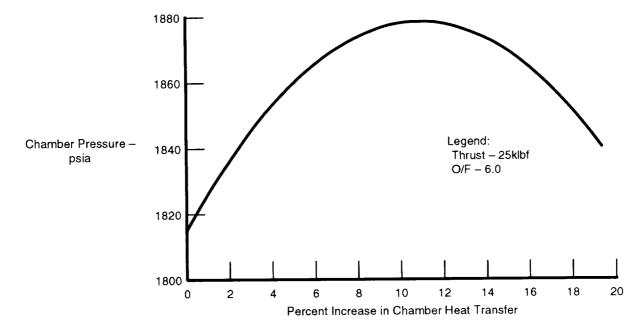


Figure 29. Advanced Full Expander With Regenerator Cycle P_c Improvement Due to Increased Chamber Heat Transfer

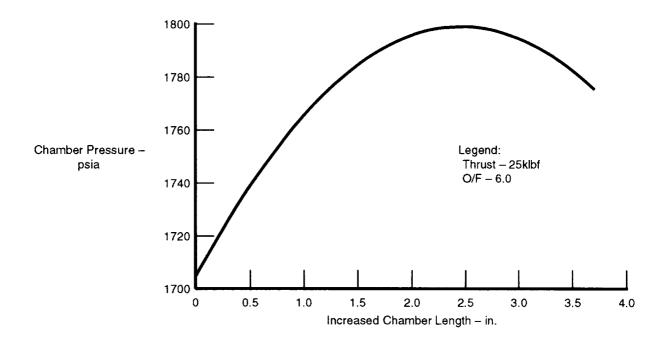


Figure 30. Advanced Split-Expander Cycle P_c Improvement Due to Increased Chamber Length

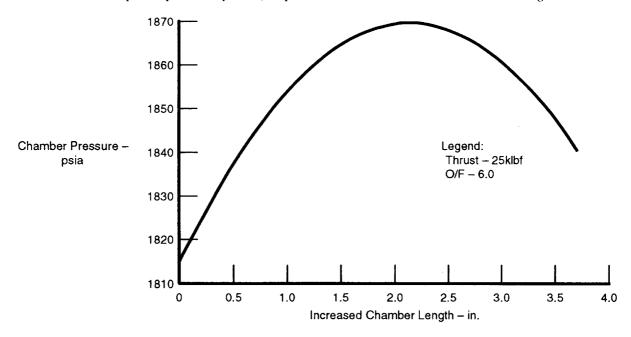
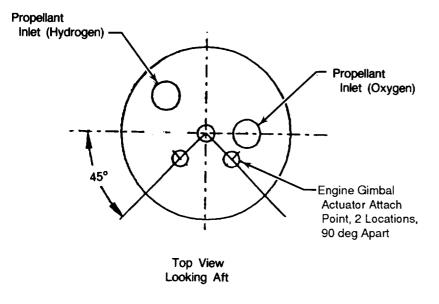



Figure 31. Advanced Full Expander With Regenerator Cycle Pc Improvement Due to Increased Chamber Length

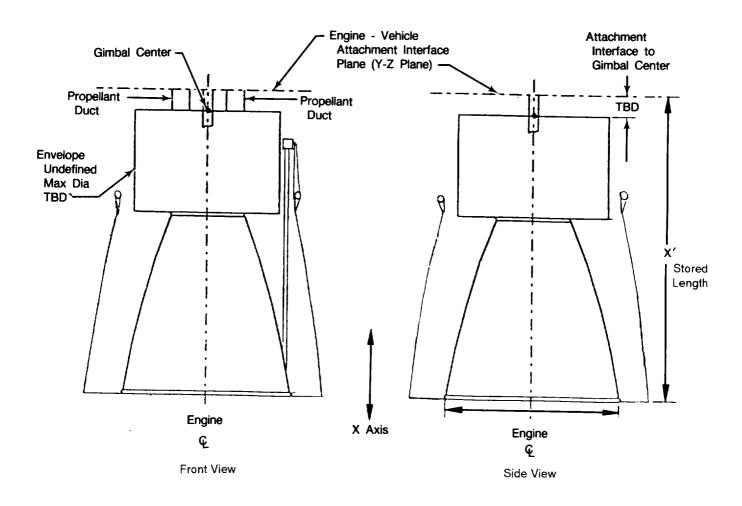


Figure 32. Engine Envelope (Sheet 1 of 2)

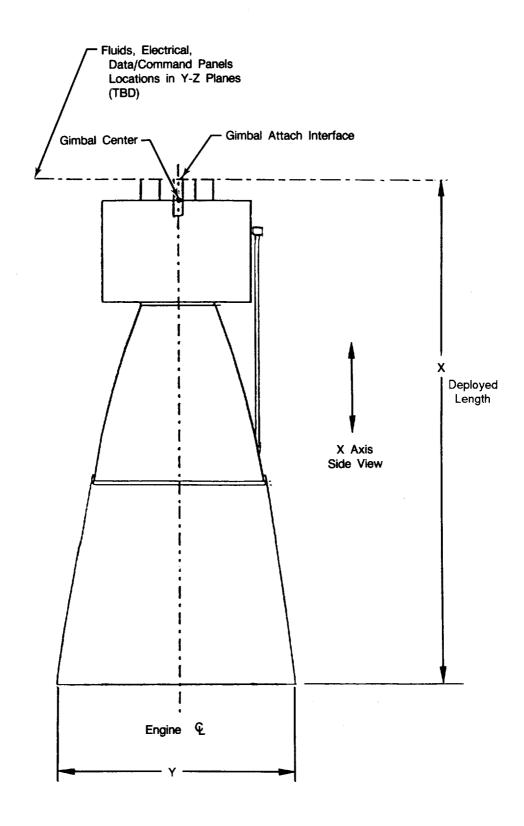


Figure 32. Engine Envelope (Sheet 2 of 2)

SECTION III THROTTLING AND HIGH MIXTURE RATIO OPERATION

COMPONENT REQUIREMENTS

The throttling requirements for the study were set at a minimum throttling capability of 10:1 and an optional requirement of 20:1. The baseline engine mixture ratio requirement was operation from 5.0 to 7.0 (6.0 ± 1.0). An optional requirement was to be able to operate oxidizer rich at a mixture ratio of 12.0. In many respects, the component requirements for wide range throttling and high mixture ratio operation are similar; therefore, the component discussion presented here covers both requirements.

The key technical issues for achieving wide range throttling and high mixture ratio operation are: (1) achievement of high combustion efficiency over a wide thrust and mixture ratio range without excessive system pressure drop and complexity, (2) the ability to adequately cool the thrust chamber over the wide range of conditions required, (3) achievement of wide range control without undue control system complexity, and (4) pump flow stability and avoidance of turbine flow separation at low flowrates. The split expander cycle was selected as the baseline cycle for the throttling and high mixture ratio operation requirements study. The full expander cycle with a regenerator was also considered. The design thrust level was 20,000 lbs.

Combustion System

Low-frequency combustion instability is the primary combustion concern when throttling a rocket engine. Low-frequency instability generally results from a low injector pressure drop being coupled to the combustion process at low thrust. Three methods have been proposed to deal with this problem: high injector pressure drop, dual-orifice injection, and gaseous injection.

The high-pressure drop injector uses a simple, fixed-area injector sized to produce an acceptable pressure loss at the lowest thrust level. However, at full thrust, with the flowrate increased twentyfold for 20:1 throttling, the injector pressure drop becomes very high, resulting in high pump discharge pressure requirements. The extra power required to meet the high discharge pressure requirements significantly reduces the achievable cycle combustion chamber pressure.

The dual-orifice injection concept provides wide range throttling capability without requiring high oxidizer injector pressure drops at full thrust or oxidizer vaporization for gaseous injection. Separate control of the primary and secondary oxidizer flow provides an adequate pressure drop through the primary at all flow conditions. At low thrust all flow is diverted through the primary orifices, and, at intermediate thrust, the primary is used to energize and atomize the secondary flow. The dual-orifice concept was derived from gas turbine engine fuel injection technology and has successfully demonstrated high performance over a wide range of conditions. Under Contracts AF-04(611)-9565, -9575, and -11611, the injector shown in Figure 33 demonstrated throttling ratios of 170:1 with fluorine/hydrogen. A similar concept using a dual-manifold tangential entry slot oxidizer element was tested in the XLR-129 oxygen/hydrogen preburner (Contract F()4(611)-68-C-0002) at pressures over 5000 psia (Figure 34). The XLR-129 tangential entry dual-orifice injection concept is currently being used in the preburner for the SSME Alternate Turbopump Development (ATD) preburner injectors. Extensive spray characterization has been completed under the ATD program. Figure 35 shows a single ATD preburner injection element at 100 percent of design flow.

Gaseous oxidizer injection also offers an effective method of achieving low-frequency combustion stability at low-thrust levels. The dual expander cycle is aimed specifically at providing gaseous oxidizer for injection. Mixing the gaseous oxidizer with the gaseous fuel over a wide range of operating conditions, however, is more difficult than gas-liquid mixing, and lower combustion efficiency is likely to be encountered at some operating conditions.

A heat exchanger may be used with a fixed-area injector to provide gaseous oxygen at an acceptable pressure drop at low thrust while maintaining reasonable injector pressure losses with liquid oxidizer at full thrust. This concept has been proposed as a solution to low-frequency instability in earlier advanced space engines (the RL10 IIB and the OTV engine), but these engines did not have the requirement for continuous throttling. An engine using a heat exchanger in conjunction with a single-element injector would require a more complex control system to provide continuous throttling over the desired 20:1 range.

Based on this comparison, a dual-orifice injector was selected for additional evaluation for the study on the basis of its versatility and potentially high combustion efficiency at full thrust, throttled, and high mixture ratio conditions.

Thrust Chamber Cooling

Rocket engine cooling with throttling can present difficult design challenges. If the entire fuel flow is used for cooling, as thrust level decreases, the coolant exit temperature increases. The temperature increases because with a fixed-geometry thrust chamber, a reduction in thrust is accompanied by a proportional decrease in chamber pressure and coolant flow, while the heat flux is reduced by approximately chamber pressure to the 0.8 power. Under some conditions, the increasing coolant temperature can cause the thrust chamber wall temperature to increase as the engine is throttled. If the wall temperature at full thrust is near the upper limit (as is desirable to minimize coolant pressure drop), the allowable upper limit at reduced thrust may be exceeded. The upper curve in Figure 36 shows a typical example. Cooling limits can be partially offset by reducing combustion length, use of higher thrust chamber contraction ratio, use of overcooling at the design point, or bypassing part of the flow at the design point and using all of the flow at off-design condition. Each of these approaches reduces the cooling problem at throttled conditions, but each imparts a cycle loss, increased thrust chamber weight and volume, added control system complexity, or some combination of these design penalties.

The split expander provides a means of avoiding the throttling constraint associated with most other cycles. Because of the reduced coolant flow at full thrust, the coolant exit temperature of the split expander is higher than with a full-expander cycle. By controlling the split-expander jacket bypass flow to increase the percent of coolant flow, the coolant exit temperature can be decreased up to a point during throttling. At some fraction of rated power (30 percent in the case studied), the jacket bypass valve is completely closed, and the cycle operates like a full-expander cycle. However, because the coolant passages for the split expander are designed for low flowrate, the combustor wall stabilizes at a lower temperature during deep throttling, as shown in the lower curve on Figure 36.

High mixture ratio operation is also enhanced with the split-expander cycle. By controlling the coolant jacket bypass flow to increase the percent of coolant flow, operation at higher mixture ratio levels with lower combustor wall temperatures is possible. Figure 37 shows the cooler wall temperatures attained with the split expander cycle compared to a typical cycle.

Low wall temperatures are essential at high mixture ratio operation. The maximum temperature for prevention of copper oxidation is 1060 to 1260°R without coatings. Use of coatings could reduce this limitation, but proven coatings are not currently available, and any coating will reduce the overall heat flux and the available cycle power.

The full-expander cycle with regeneration also offers the potential for control of thrust chamber wall temperatures. By reducing the amount of regeneration, the thrust chamber coolant temperature is reduced. The cooling benefit of reducing the amount of regeneration is partially offset by the higher coolant density and lower cooling velocity. Thus, cooling at throttled conditions with a regenerator in the cycle is more difficult than throttled cooling with a split-expander cycle. Also, care must be taken not to reduce the amount of regeneration at low thrust to the point that unacceptably low coolant velocity results. Figure 38 compares the coolant exit

temperature for the case of all of the fuel passing through the regenerator with a case where a portion of the jacket exit flow bypasses the regenerator. (The control scheme for bypassing the regenerator is presented below.) Without partial bypassing of the regenerator, the coolant jacket exit temperature greatly exceeds the allowable copper wall temperature. With partial bypassing, the jacket wall temperature is held within acceptable limits, as shown in Figure 39.

Wide Range Control

A conceptual control system for the split-expander cycle is shown in Figure 40. The jacket bypass valve (JBV) is used to control the coolant jacket flow for throttled and high mixture ratio operation. The JBV also contributes to thrust control. The oxidizer secondary control valve controls the oxidizer flow split between the primary and secondary injector flow and provides mixture ratio control by throttling the oxidizer flow. These two valves can also provide control of thrust down to approximately 60 percent. For deep throttling, a turbine bypass valve is used to control thrust by reducing turbine power.

In the split-expander cycle, liquid hydrogen enters the engine inlet and flows through a single-stage boost pump and proceeds onto a three-stage main pump. After the first stage of the main pump, 50 percent of the hydrogen flow is diverted and routed through the JBV and to the mixer. The remainder of the hydrogen flow is sent through the second and third stages of the pump to attain the high pressure required by the cycle and is then used to cool the chamber and nozzle. A small fraction of the gaseous hydrogen leaving the nozzle coolant exit is diverted through the turbine bypass valve (TBV) and flows into the mixer. The rest of the coolant hydrogen flow first powers the main hydrogen and oxygen turbines before being routed to the hydrogen and oxygen boost turbines. The turbine flow is then used to provide energy to the oxidizer tank pressurant through a heat exchanger and enters the mixer to join the bypass flows. The combined hydrogen flow then exits the mixer, flows through the fuel shutoff valve (FSOV), and enters the injector for combustion in the main chamber. On the oxidizer side, liquid oxygen enters the engine and flows through a single-stage boost pump and a single-stage main pump. After exiting the main pump, the oxygen is split between the primary and secondary legs of the injector, with the secondary flow controlled by the oxidizer flow control valve (SOCV). The flow routed through the primary side flows through the primary oxidizer shutoff valve (POSV). The oxygen flow is subsequently injected into the main chamber to combust with the hydrogen.

Figure 41 shows a conceptual control system for the full-expander cycle with regeneration. Because the full-expander cycle has no bypass flow, thrust control is achieved entirely by the turbine bypass valve. The turbine bypass flow is routed around the regenerator heat exchanger. As thrust is reduced, the amount of bypass flow increases, thereby reducing the amount of regeneration.

In the full-expander cycle with regeneration, liquid hydrogen enters the engine inlet and flows through a single-stage boost pump and proceeds onto a three-stage main pump. After exiting the main pump, the hydrogen flows pass through a regenerator before being used to cool the chamber and nozzle. A small portion of the gaseous hydrogen leaving the nozzle coolant exit is diverted around the turbines through the turbine bypass valve (TBV). The majority of the hydrogen flow is used to power the main hydrogen and oxygen turbines before being routed to the hydrogen and oxygen boost turbines. After leaving the oxygen boost turbine, the flow travels through the regenerator and mixes with the flow which bypassed the turbines. The hydrogen then continues on through the fuel shutoff valve (FSOV) and enters the injector for combustion in the main chamber. The oxidizer side of the cycle has the same configuration as the split-expander cycle. The liquid oxygen enters the engine and flows through a single-stage boost pump and a single-stage main pump. After exiting the main pump, the oxygen flow is split between the primary and secondary legs of the injector, with the secondary flow being controlled by the oxidizer flow control valve (OCV). The flow routed through the primary side passes through the primary oxidizer shutoff valve (POSV) and is subsequently injected into the main chamber to combust with the hydrogen.

Turbomachinery

The turbomachinery concerns when throttling a rocket engine are flow stability on the pump side and flow separation on the turbine end. As the rocket engine is throttled, propellant flowrates and turbopump speeds both decrease. The main pump tends to come down an operating line like that shown in Figure 42. As the pump enters the low-capacity region, the head coefficient drops off, and the pump flow becomes unstable. One method of avoiding this is to recirculate a percentage of the flow from the pump exit to the inlet; in effect maintaining a higher volumetric flow at the low-thrust levels. However, this increases the total enthalpy entering the pump and may cause the pump to cavitate. To overcome this, the boost pump can be operated in a manner to produce a higher pressure to the main pump, which together with the recirculated flow can effectively eliminate both instability and cavitation. In addition to pump recirculation, several design features may be used to enhance pump stability with throttled operation. One method is use of an inducer-interstage strut. The inlet struts serve to minimize induced pre-swirl during throttled conditions, thereby providing a steepened headflow characteristic for improved pump stability. Figure 43 shows how these characteristics increased the head coefficient in the 350K and XLR-129 high pressure fuel turbopumps, thereby allowing significant increases in throttleability.

Vaneless pump discharge collectors should be used on all stages, as opposed to stall-prone collectors with incidence-sensitive vane or pipe diffusers. All stages should also employ low discharge blade angles to steepen the head-flow characteristics for improved stability. Various advanced seal configurations may be used to minimize parasitic leakages detrimental to pump stability at low flowrates. Moderate suction specific speed requirements have been selected at design and off-design operation to avoid cavitation-induced instabilities. Various throttle aids such as inlet back-flow collectors can also be employed.

Turbine flow separation is primarily a performance concern rather than an operational concern. The throttling analysis completed under this study showed that the 20:1 range resulted in turbines which are close to separation. One advantage that was demonstrated by the split-expander cycle is that, since the turbine is designed for only half the flow at full thrust, when the engine is throttled down to 5 percent thrust, the turbine has more flow separation margin in it than the full-expander cycle.

CYCLE DATA

The split-expander cycle and full-expander cycle with regeneration were selected for more detailed engine studies. These studies consisted of an engine throttling investigation and a mixture ratio variation study. The thrust chamber and nozzle configuration chosen for both the split expander and the full expander with regeneration is shown in detail in Figure 44. The thrust chamber is 12.3 inches long, has a contraction ratio of 4.0, and is constructed from copper tubing. The regenerative nozzle extends out to an area ratio of 210 to 1, and is built from Haynes 230 tubing. A composite material nozzle extension increases the overall area ratio to 1000 to 1. The design point selected for the throttling studies for each cycle is defined as follows:

	Split Expander	Full Expander With Regeneration
Vacuum Thrust Level, lb	20 K	20 K
Inlet Mixture Ratio	6.0	6.0
Chamber Pressure, psia	1612	1764

Detailed cycle sheets for the full-thrust design thrust levels are located in Appendix B for each of the engine cycles examined.

Split-Expander Cycle

A throttling investigation was performed on the split-expander cycle, with cycle points generated at 100, 50, 10, and 5 percent of the design thrust level while holding the mixture ratio constant at 6.0. (The throttled cycle sheets detailing this investigation are located in Appendix C.) During engine throttling in the split-expander cycle, the JBV, which was previously shown in Figure 40, is used to increase the percent of hydrogen flow available to cool the thrust chamber/nozzle assembly. This increased coolant flow lowers the coolant exit temperature with thrust level, as shown in Figure 45, while the JBV area decreases according to the schedule shown in Figure 46. At 10 percent thrust the JBV is completely closed, and the cycle reverts to a full expander with all of the hydrogen flow being used to cool the thrust chamber. As a result, the coolant exit temperature below 10 percent thrust increases. The TBV opens (Figure 47) as thrust level decreases, allowing a greater percentage of the coolant flow to bypass the turbine and causing system pressures and pump speeds to drop.

A major concern during deep throttling is low frequency combustion instability resulting from low oxidizer injector pressure drops ($< 5\% \Delta P/P_c$). Dual-orifice injection allows the effective injection area to be varied with thrust level, giving an acceptable average injector pressure loss both at low thrust and full thrust, as shown in Figure 48. The oxygen is injected using tangential swirl elements to promote momentum exchange between the primary and secondary streams and the net injection velocity is sufficient for good atomization and efficiency.

A mixture ratio sensitivity study was done on the split expander cycle for mixture ratios of 5 to 7 and 12 at the 20 klb thrust design level. The cycles generated for this study are given in Appendix D. A plot of chamber pressure and chamber/nozzle heat transfer versus mixture ratio is shown in Figure 49 for the 5 to 7 range.

Below the O/F of 6.0 level chamber pressure is lower than the design point chamber pressure, which can be attributed to the reduced heat flux caused by the lower combustion temperature and increased power requirements to accommodate the higher fuel flows. The reduced heat flux limits the available cycle power by decreasing the turbine inlet temperature. The TBV is closed to maintain chamber pressure. When the 5 percent margin designed into the cycle reaches 0 as the O/F is lowered, chamber pressure and, subsequently, thrust decline. Conversely, above an O/F of 6.0, there is a surplus of energy available to the turbine, and chamber pressure and thrust can be maintained by opening the TBV. On the other side of stochiometric, at a mixture ratio of 12.0, the heat flux in the chamber is again below the design level so that the maximum chamber pressure is limited to 1250 psia. The inlet fuel flow is nearly 50 percent of design, so the JBV is closed, making all of the fuel available for use as a coolant and turbine flow. With the increased mixture ratio, the horsepower split between the fuel and oxidizer turbopumps changes and the fuel side is overpowered by the flow required by the oxidizer turbine. To compensate for this, the fuel shutoff valve (FSV) is throttled to create a higher line loss downstream of the turbines and to load the fuel system. The FSV must close to approximately 36 percent of its design flow area.

Full-Expander Cycle With Regenerator

A throttling study was also conducted for the full-expander cycle with regeneration. The throttled cycles generated were at 50, 10, and 5 percent of the 20,000 lbs design thrust at a mixture ratio of 6.0. Detailed cycle sheets for these throttled points are contained in Appendix C.

Unlike the split-expander cycle, the coolant flow cannot be controlled during throttling and, with the chamber designed for full coolant flow, the coolant exit temperature rises during engine throttling, as shown in Figure 50. At the 5 percent thrust level, the turbine inlet temperature is above 1200°R. The TBV opens during throttling (Figure 51), bypassing a greater percentage of the hydrogen flow around the turbine, dropping pump speeds and system pressures. Since the energy for the hot side of the regenerator is supplied by the turbine discharge flow, as thrust decreases, the lower flowrate results in a relatively small increase in coolant inlet temperature (Figure 52).

As with the split-expander cycle, a major concern during deep throttling is low-frequency combustion instability resulting from low oxidizer injector pressure drops ($< 5\% \Delta P/P_c$). To maintain the required pressure loss without having to vaporize the oxygen, the dual-orifice injector concept was used in the full-expander cycle studies. The dual-orifice injector allows the effective injection area to be varied with thrust level, giving an acceptable average injector pressure loss both at low thrust and full thrust, as shown in Figure 53. The oxygen is injected utilizing tangential swirl elements to promote momentum exchange between the primary and secondary streams, and the net injection velocity is sufficient for good atomization and efficiency.

Using the 20 klb thrust level as the design point, a mixture ratio sensitivity study was conducted with the full-expander cycle with regeneration. The specific O/Fs studied were from 5 to 7 and 12.0. Detailed cycle sheets for these operating points are contained in Appendix D. A plot of chamber pressure and chamber/nozzle heat transfer versus mixture ratio is shown in Figure 54. The characteristics display the same trends for the full-expander cycle with regeneration as those seen with the split expander cycle. At the lower O/F levels, the cycle runs out of power and chamber pressure falls off. The coolant and turbine flow for the full-expander cycle with regeneration, operating at high mixture ratio, is much lower than the design value; consequently, turbopump performance suffers and the achievable chamber pressure is lower. At the mixture ratio of 12.0, the chamber pressure drops to 1160 psia. As with the split-expander cycle, the FSV must be throttled to load the fuel system. The valve is closed to under 10 percent of its design value. The selected control system with partial regenerator bypass, as was previously shown in Figure 41, provides lower coolant exit temperature than achievable without turbine bypass, but temperatures are still above current acceptable limits for copper thrust chambers. Either improved materials, or a more complex control system that provides complete regenerator bypass, would be required to achieve operation at a mixture ratio of 12.0. Either approach would be expected to reduce achievable chamber pressure over some portion of the mixture ratio range.

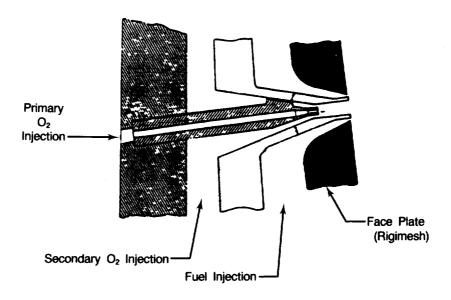


Figure 33. Coaxial Dual Area Orifice Injector

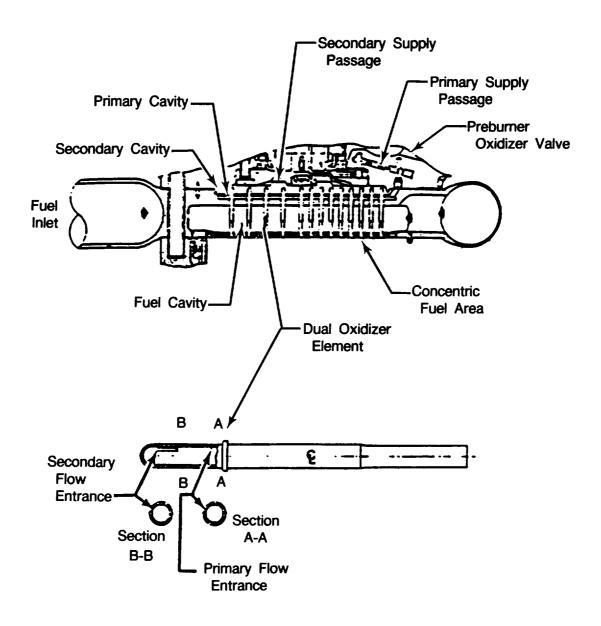


Figure 34. XLR-129 Demonstrator Engine Preburner Injector With Dual Tangential Entry Injection

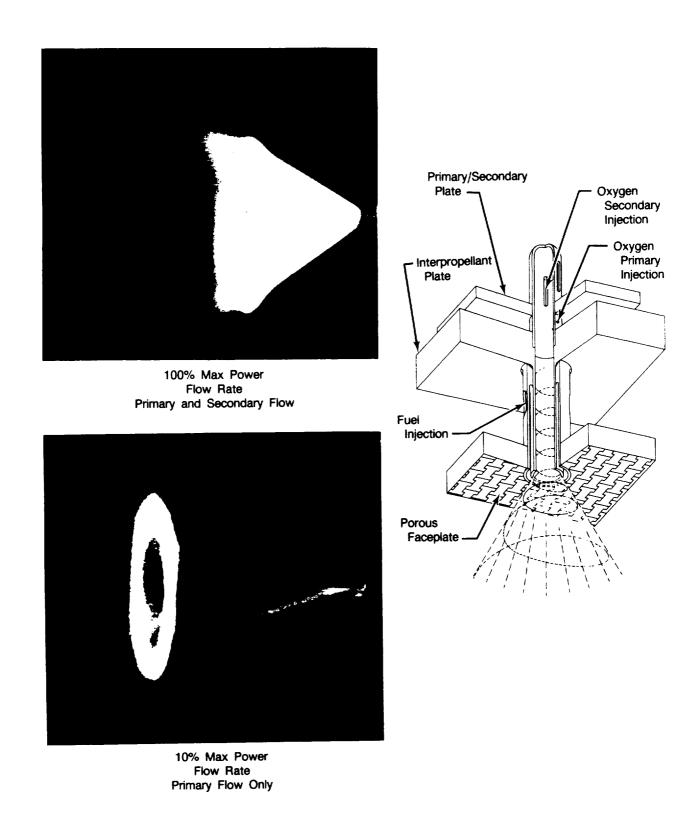


Figure 35. Tangential Entry Dual-Orifice Injection

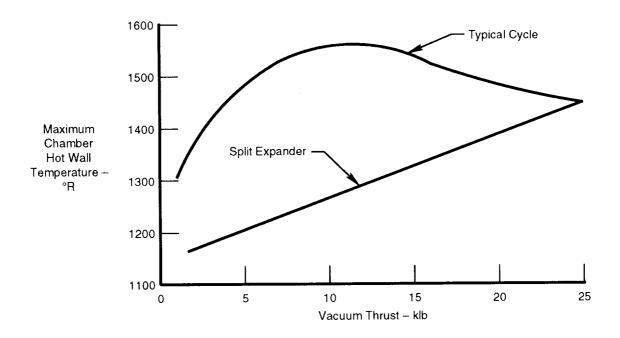


Figure 36. Maximum Thrust Chamber Wall Temperature With Throttling for a Typical Cycle and for the Split-Expander Cycle



Figure 37. Comparison of Thrust Chamber Wall Temperature Versus Mixture Ratio for Typical and Split-Expander Cycles

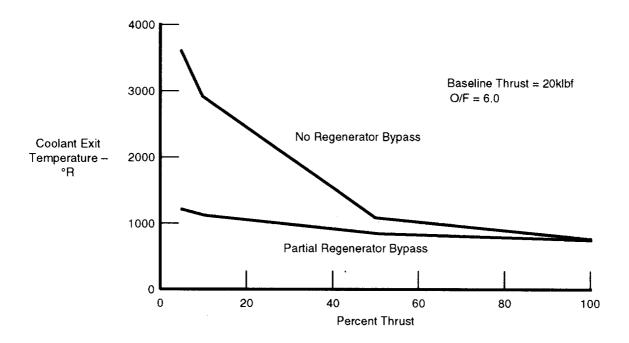


Figure 38. Coolant Exit Temperature Versus Percent Thrust for the Full-Expander Cycle With Regeneration



Figure 39. Jacket Wall Temperature Versus Percent Thrust for the Full-Expander Cycle With Regeneration

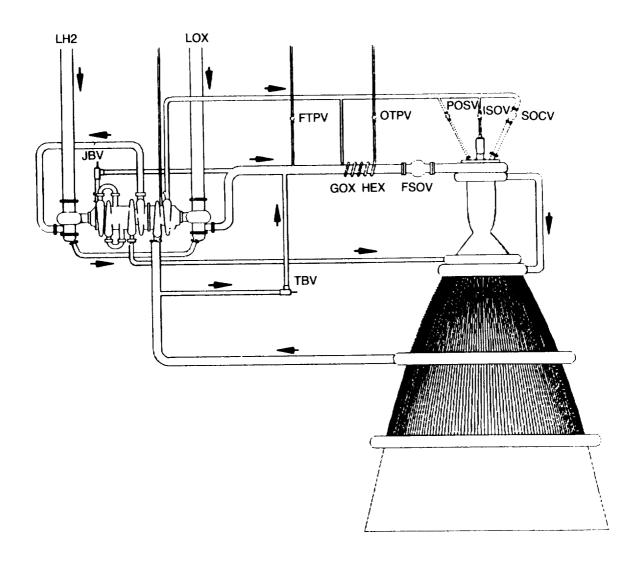


Figure 40. Space Engine Control Schematic — Split-Expander Cycle

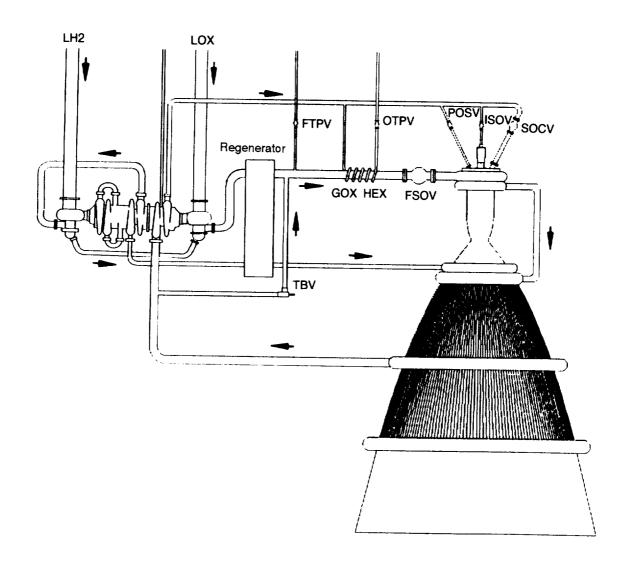


Figure 41. Space Engine Control Schematic — Full-Expander Cycle With Regeneration

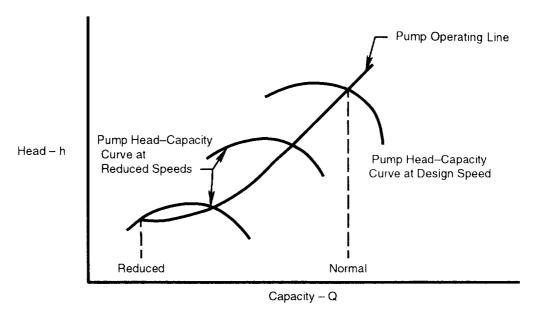


Figure 42. Typical Turbopump Head-Capacity Curve

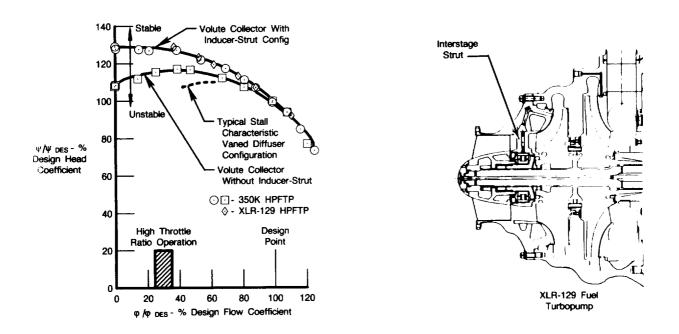


Figure 43. Volute Collector With Inducer Struts Provides Head-Flow Characteristics

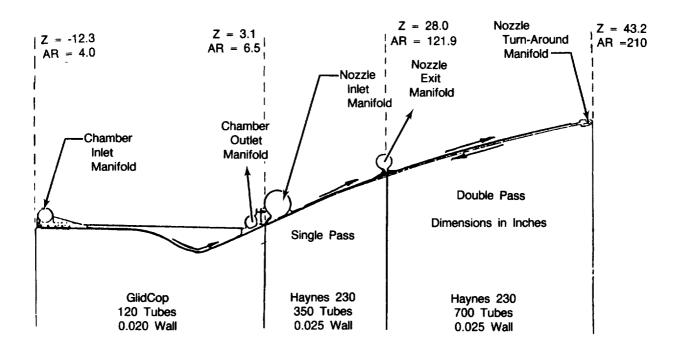


Figure 44. Thrust Chamber and Nozzle Cooling Configuration for the Full-Expansion Cycle With Regeneration and the Split-Expander Cycle

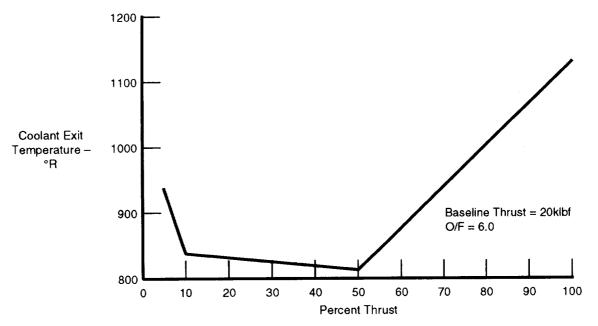


Figure 45. Split-Expander Cycle Throttling, Coolant Exit Temperature Versus Percent Thrust

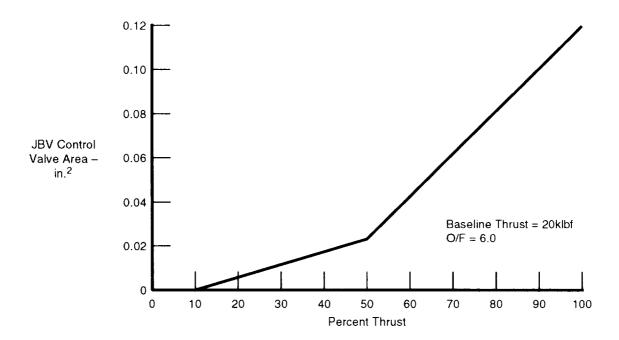


Figure 46. Split-Expander Cycle Throttling, JBV Control Valve Area Versus Percent Thrust

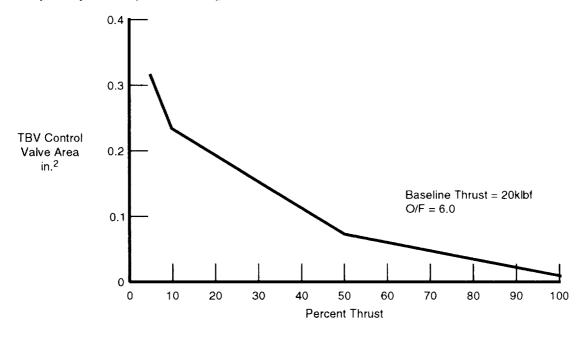


Figure 47. Split-Expander Cycle Throttling, TBV Control Valve Area Versus Percent Thrust

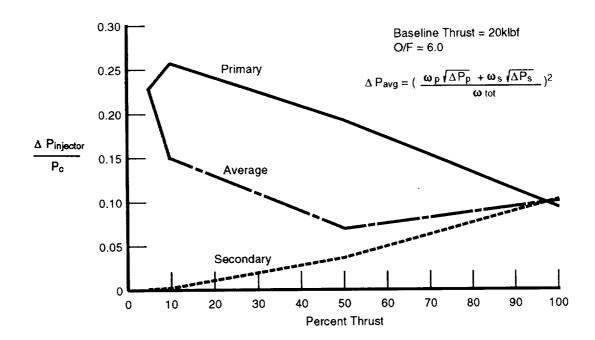


Figure 48. Split-Expander Cycle Throttling, Ratio of ΔP Across Injector to P_c Versus Percent Thrust

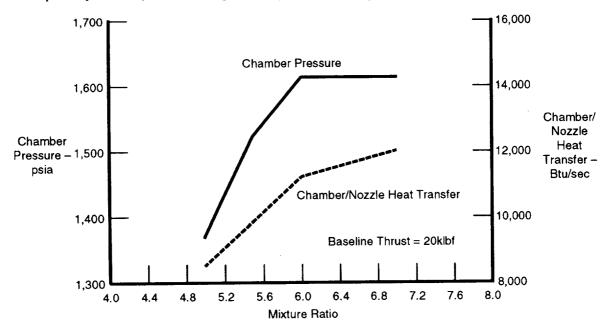


Figure 49. Split-Expander Cycle Chamber Pressure, and Nozzle Heat Transfer Versus Mixture Ratio

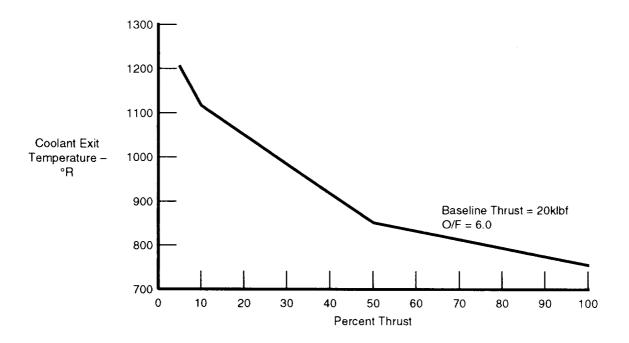


Figure 50. Full Expander With Regenerator, Coolant Exit Temperature Versus Percent Thrust

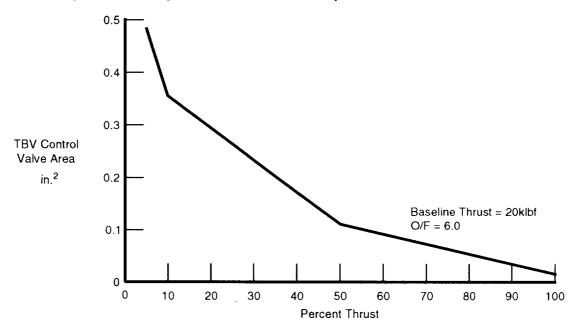


Figure 51. Full Expander With Regenerator, TBV Control Valve Area Versus Percent Thrust

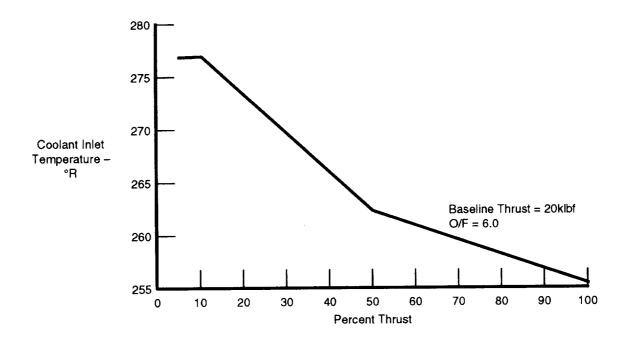


Figure 52. Full Expander With Regenerator, Coolant Inlet Temperature Versus Percent Thrust

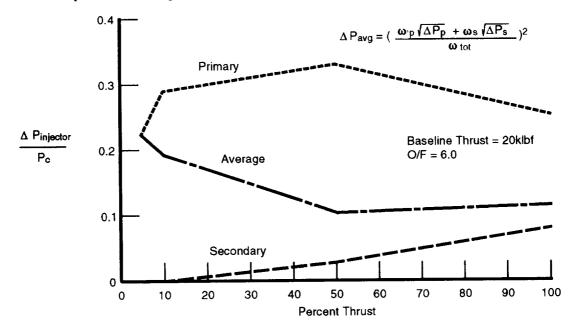


Figure 53. Full Expander With Regenerator, Ratio of ΔP Across Injector to P_c Versus Percent Thrust

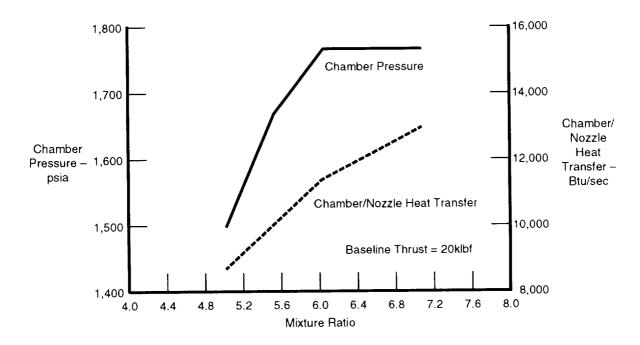


Figure 54. Full-Expander Cycle With Regenerator, Chamber Pressure and Chamber/Nozzle Heat Transfer Versus Mixture Ratio

SECTION IV RECOMMENDATIONS

Based upon the results of this study and related ongoing space engine studies at Pratt & Whitney, the following recommendations are offered:

- Steps should be taken to investigate the key technology issues associated with design and fabrication of copper tubular thrust chambers. These issues include: (a) determination of the heat transfer enhancement associated with tubular chambers compared to smooth wall chambers, (b) determination of cyclic structural life increases associated with copper tubes over milled channel construction, and (c) investigation of copper tube chamber fabrication techniques to take full advantage of the total heat transfer and life advantages of copper tubular chambers.
- 2. The study should be expanded to investigate optimum cycles and design approaches for expander cycle engines in the 50 to 200klbf thrust range.
- 3. Interface definition should be expanded in conjunction with system requirement definitions from vehicle contractors.
- 4. Performance and envelope data should be updated as performance and technology levels become better defined from such sources as the NASA-LeRC high area ratio performance investigations and focused technology programs.

APPENDIX A PARAMETRIC DATA

Parametric data are presented in Figures 55 through 107.

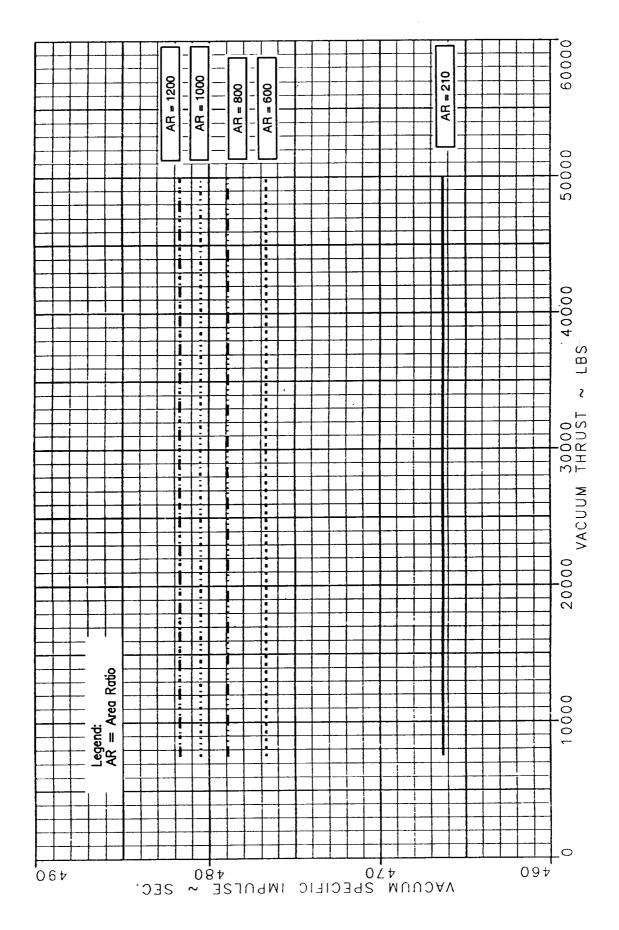


Figure 55. Ivac Versus Vacuum Thrust for Chamber Pressure = 1000 psia

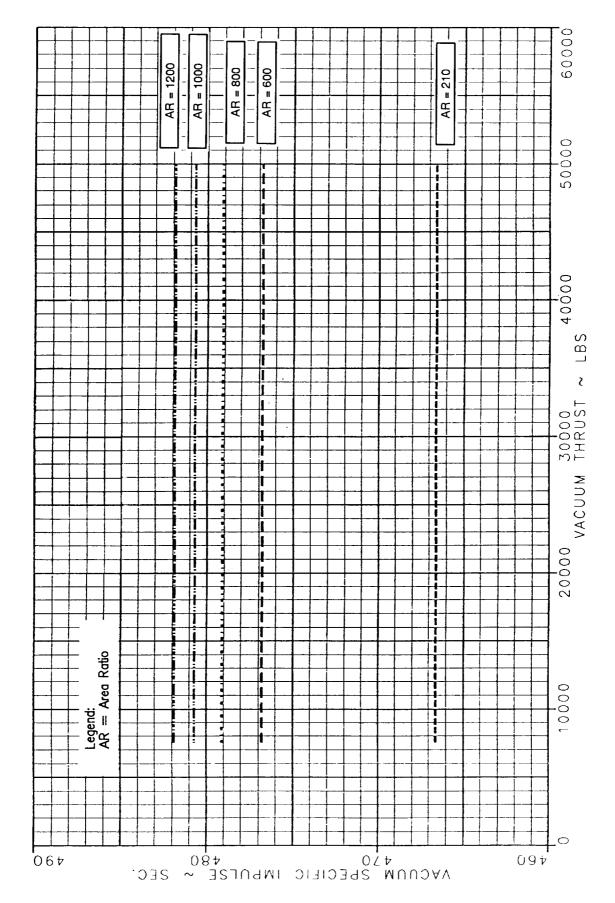
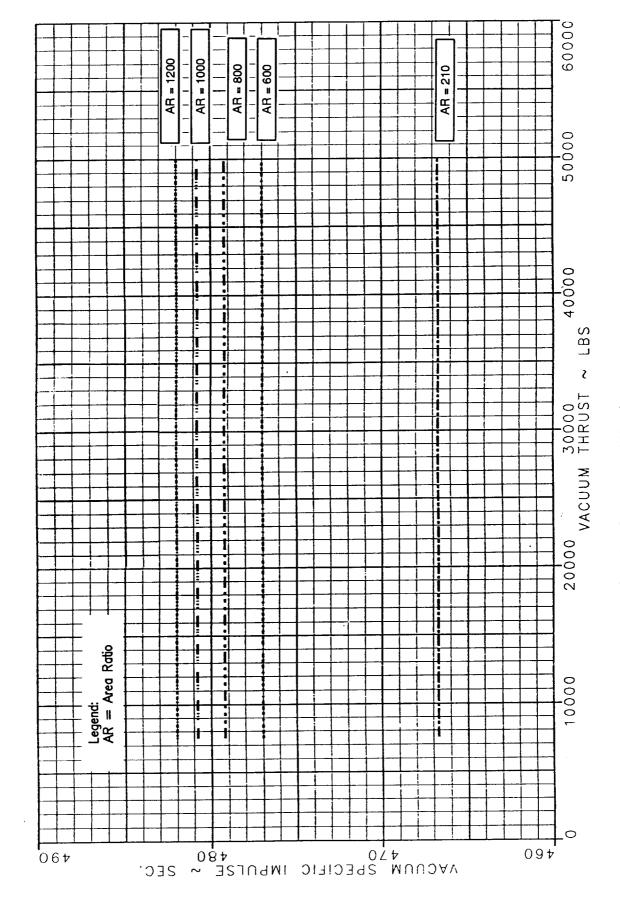
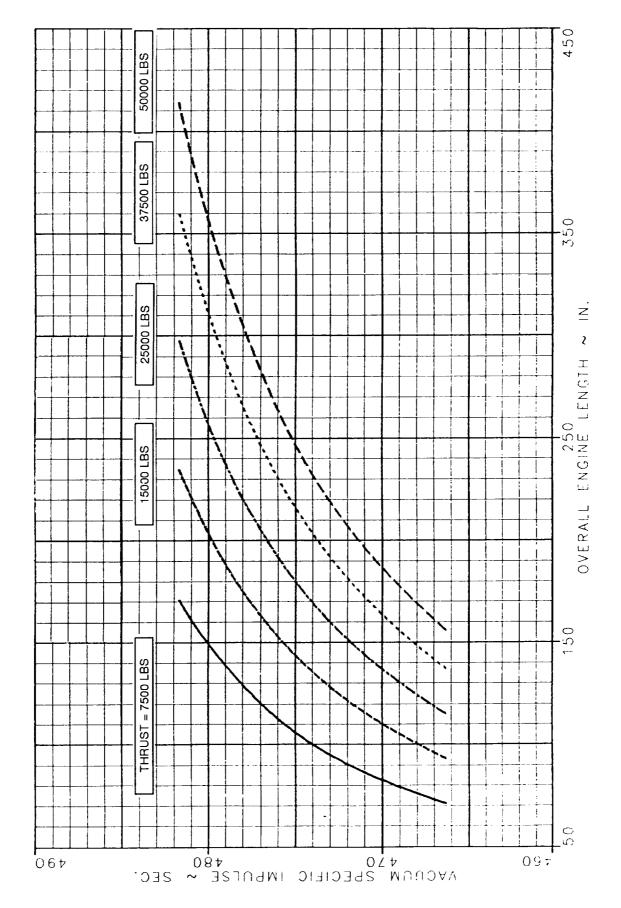
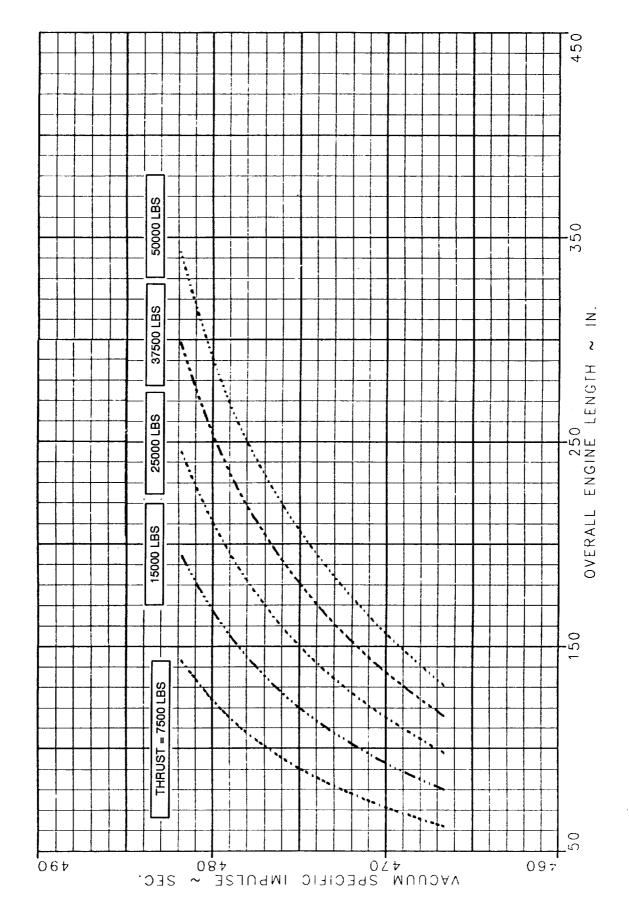
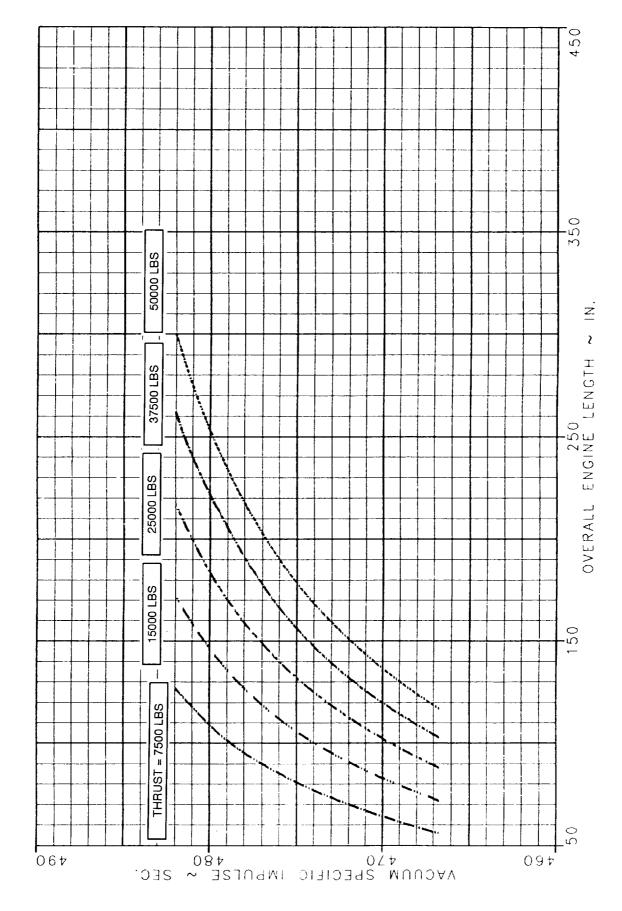
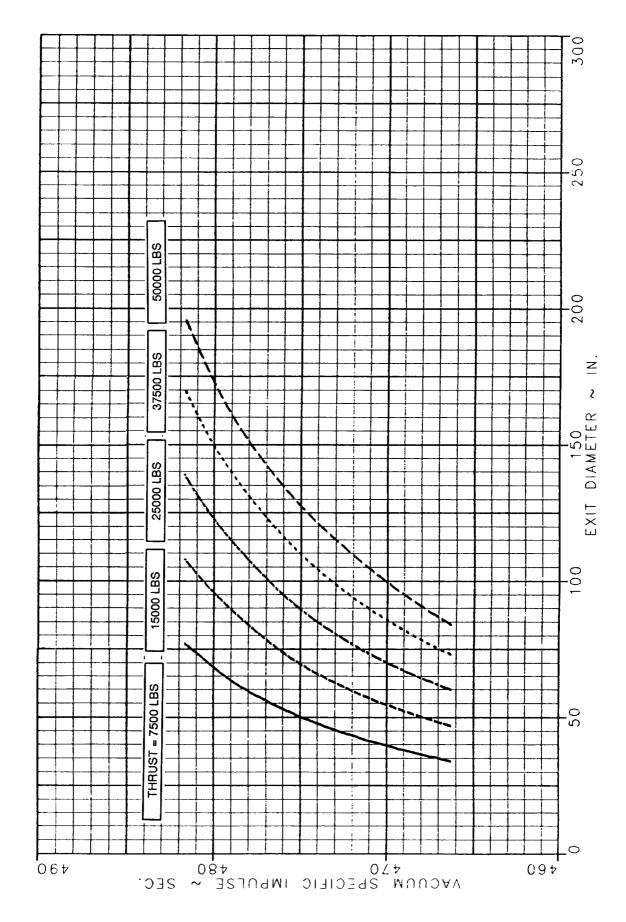
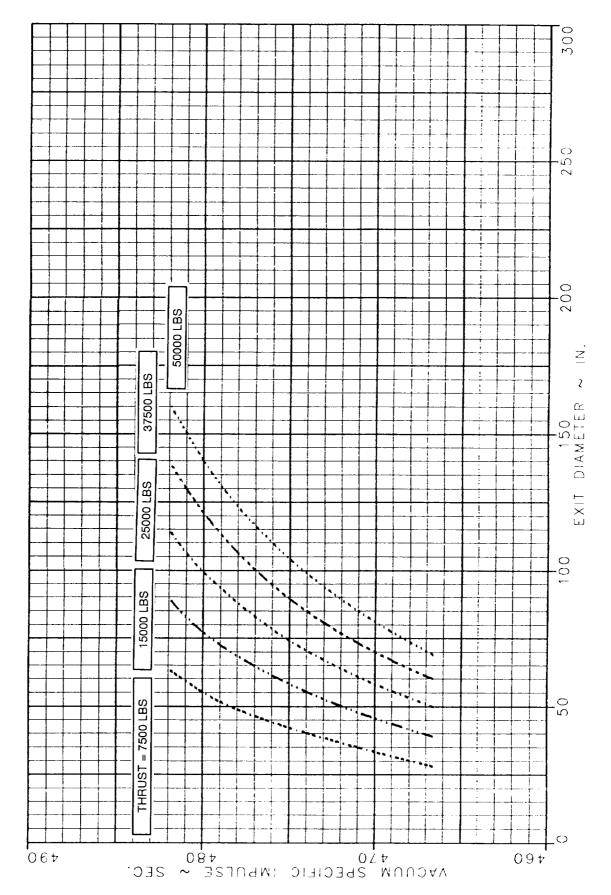


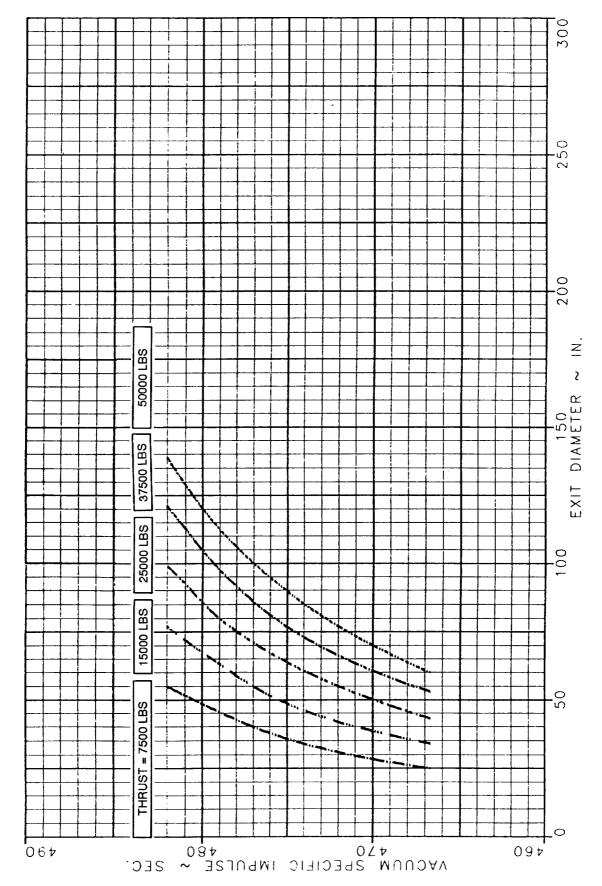
Figure 56. Ivac Versus Vacuum Thrust for Chamber Pressure = 1500 psia

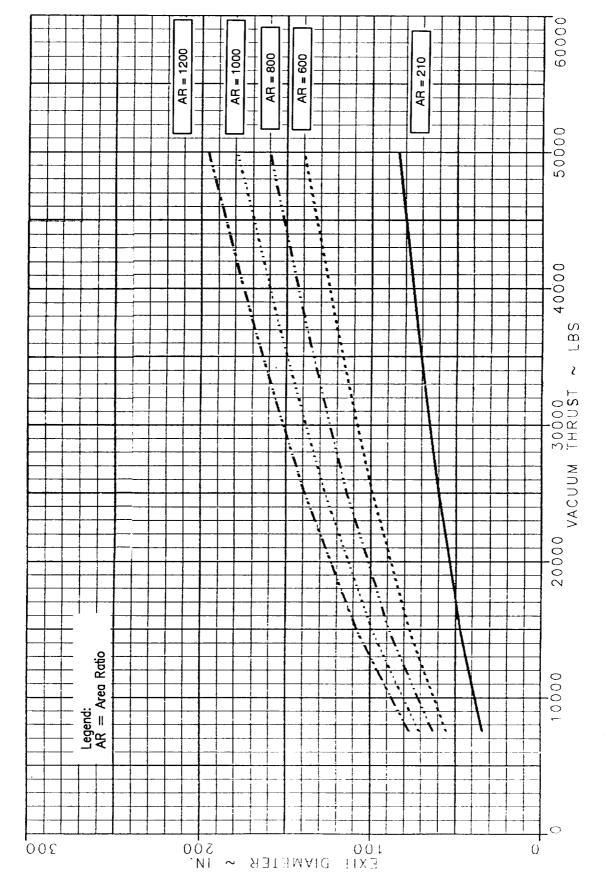




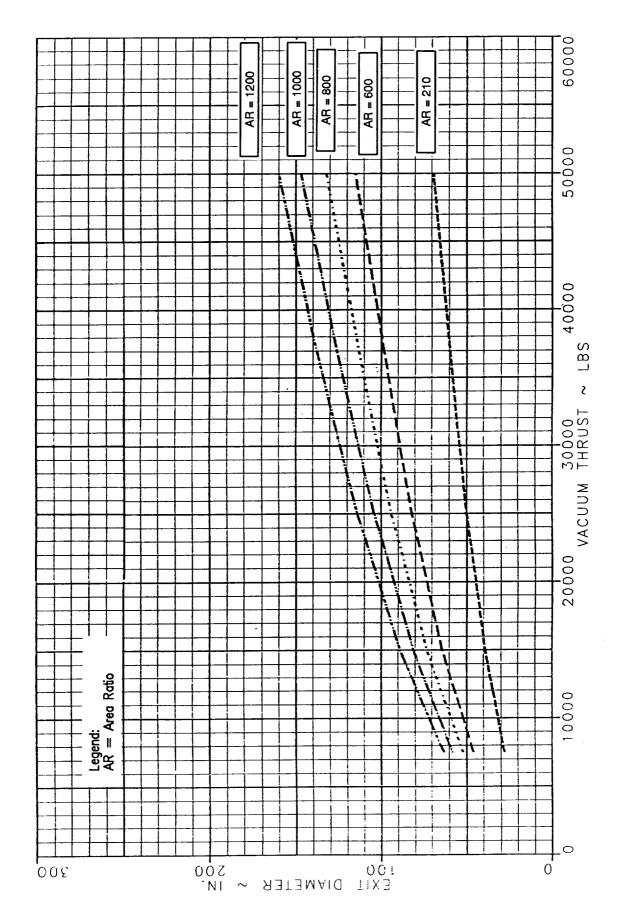

Figure 57. Ivac Versus Vacuum Thrust for Chamber Pressure = 2000 psia

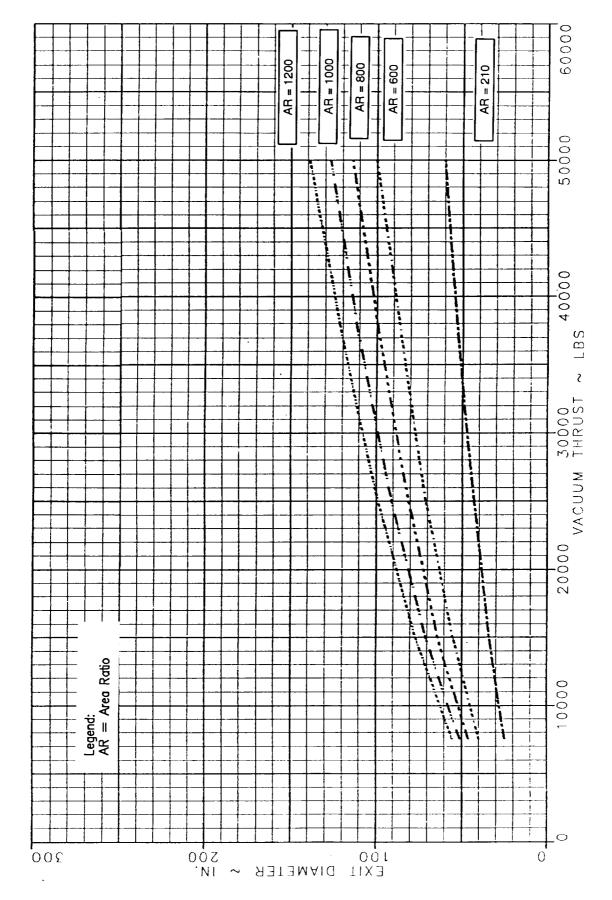

Vacuum Specific Impulse Versus Length for Chamber Pressure = 1000 psia Figure 58.

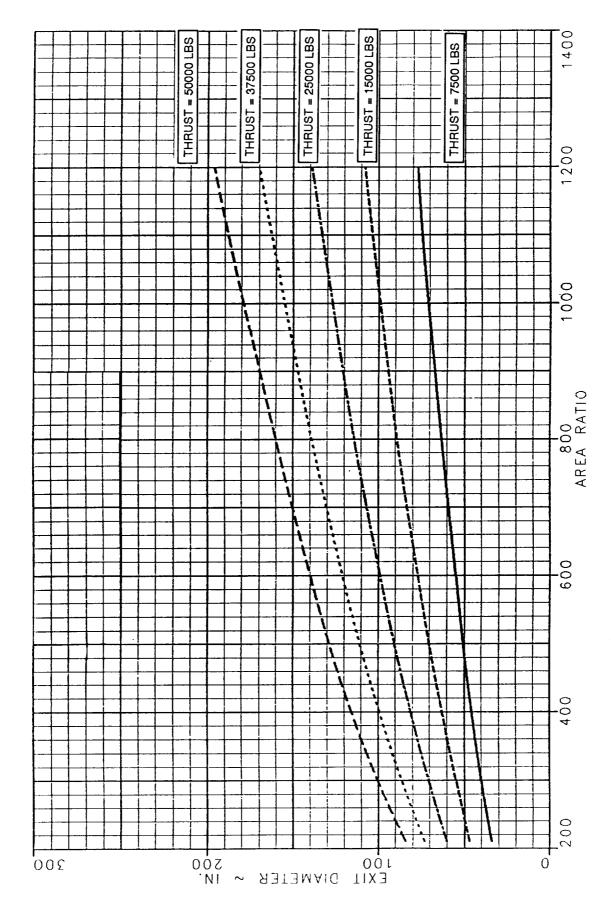

Vacuum Specific Impulse Versus Length for Chamber Pressure = 1500 psia Figure 59.

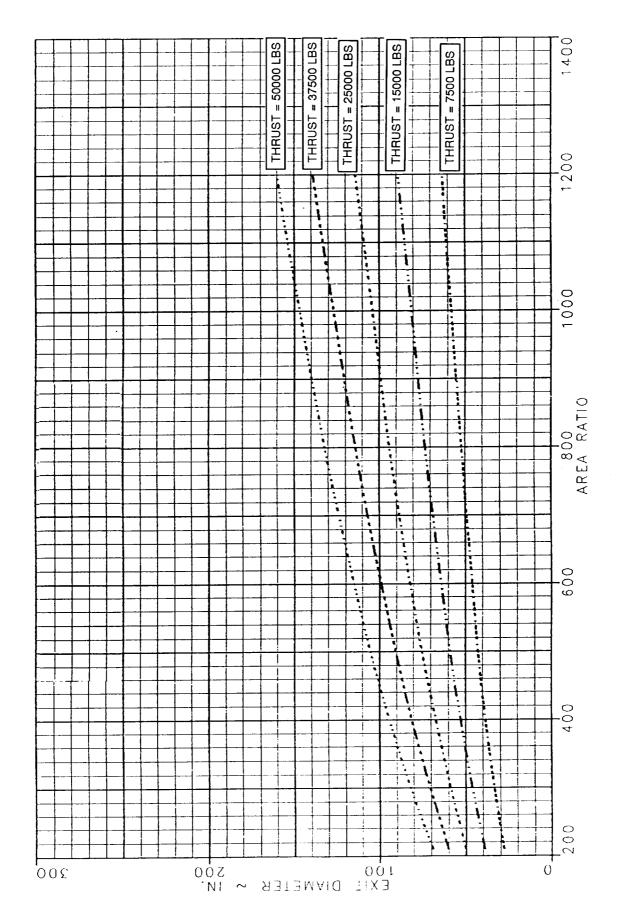

Vacuum Specific Impulse Versus Length for Chamber Pressure = 2000 psia Figure 60.

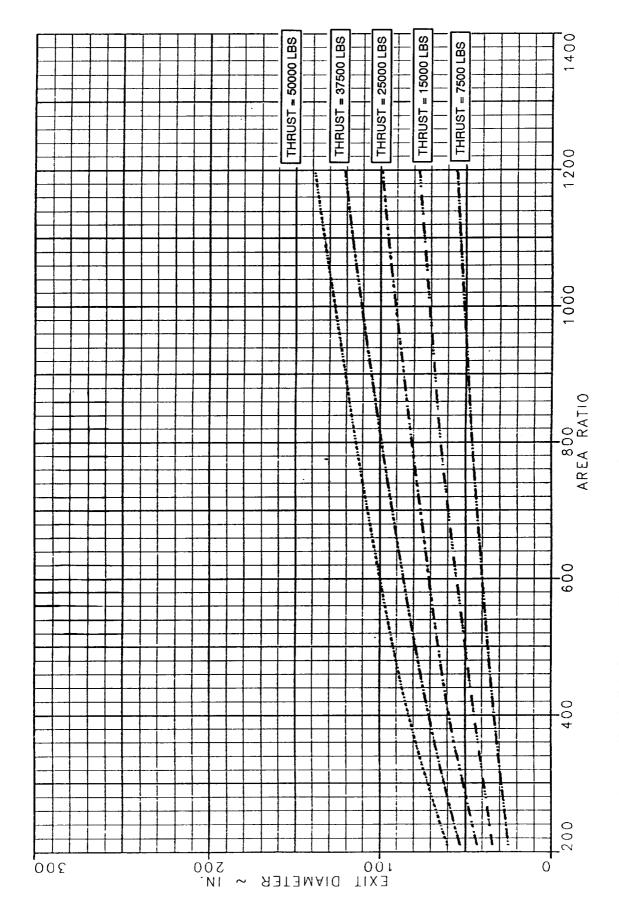

Vacuum Specific Impulse Versus Diameter for Chamber Pressure = 1000 psia Figure 61.


Vacuum Specific Impulse Versus Exhaust Nozzle Exit Diameter for Chamber Pressure = 1500 psia Figure 62.


Vacuum Specific Impulse Versus Exhaust Nozzle Exit Diameter for Chamber Pressure = 2000 psia Figure 63.


Exhaust Nozzle Exit Diameter Versus Thrust for Chamber Pressure = 1000 psia Figure 64.


Exhaust Nozzle Exit Diameter Versus Thrust for Chamber Pressure = 1500 psia Figure 65.


Exhaust Nozzle Exit Diameter Versus Thrust for Chamber Pressure = 2000 Figure 66.

Exhaust Nozzle Exit Diameter Versus Area Ratio for Chamber Pressure = 1000 psia Figure 67.

Exhaust Nozzle Exit Diameter Versus Area Ratio for Chamber Pressure = 1500 psia Figure 68.

Exhaust Nozzle Exit Diameter Versus Area Ratio for Chamber Pressure = 2000 psia Figure 69.

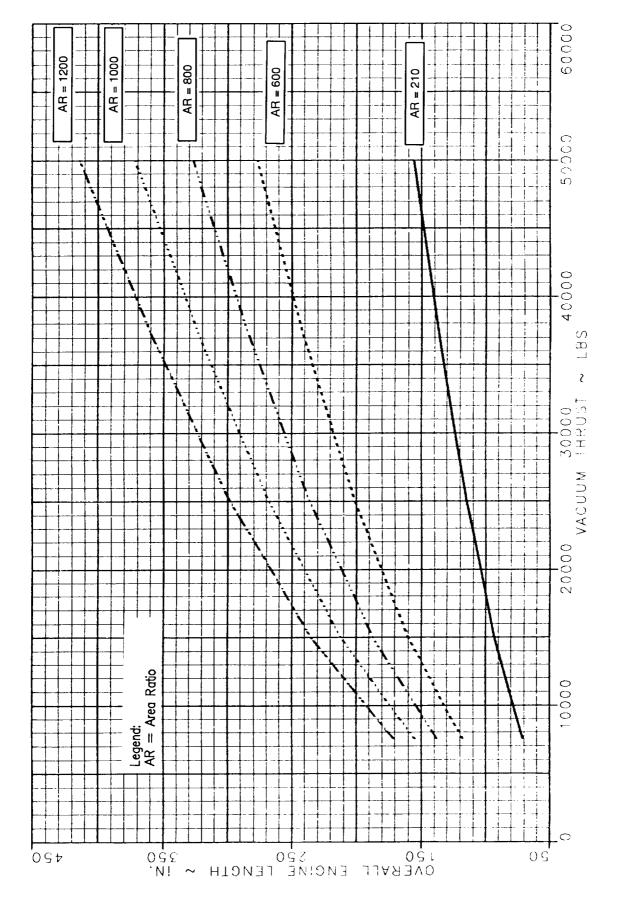


Figure 70. Engine Length Versus Thrust for Chamber Pressure = 1000 psia

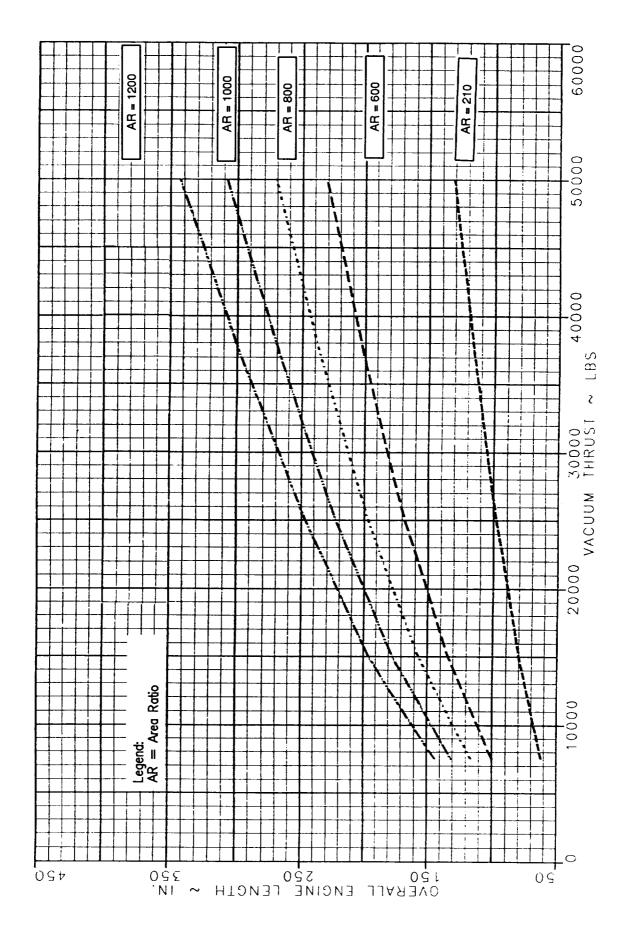


Figure 71. Engine Length Versus Thrust for Chamber Pressure = 1500 psia

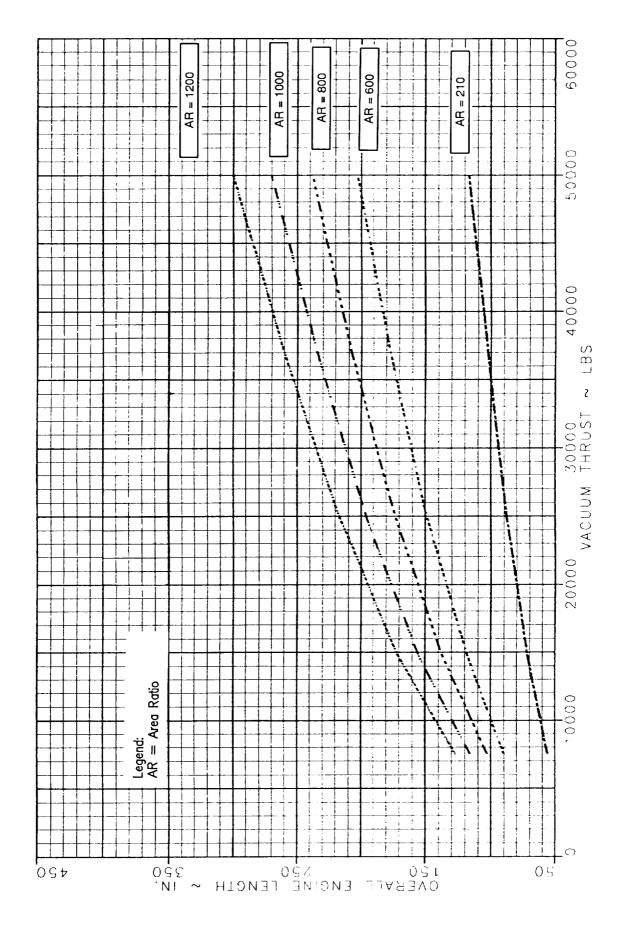
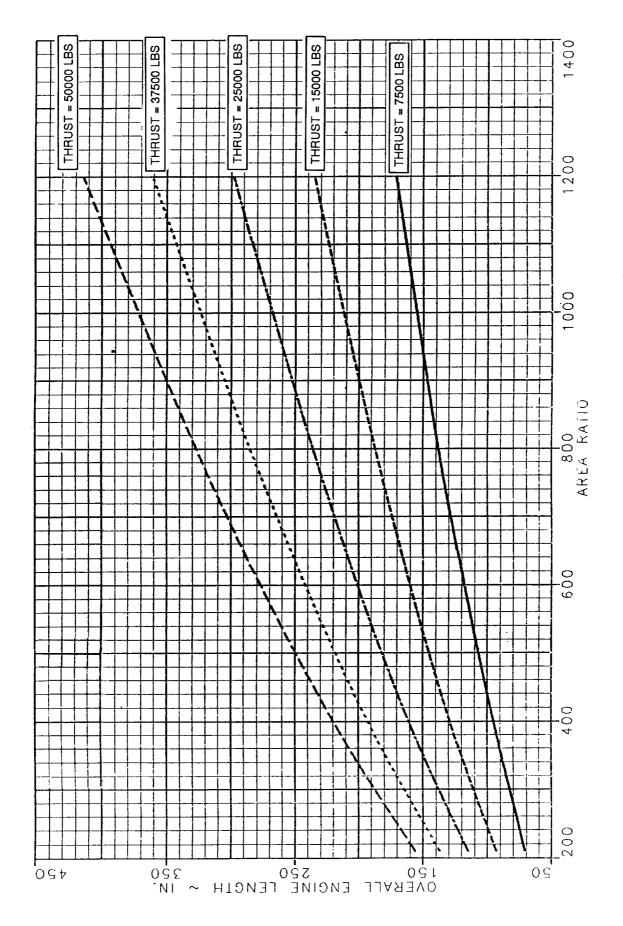
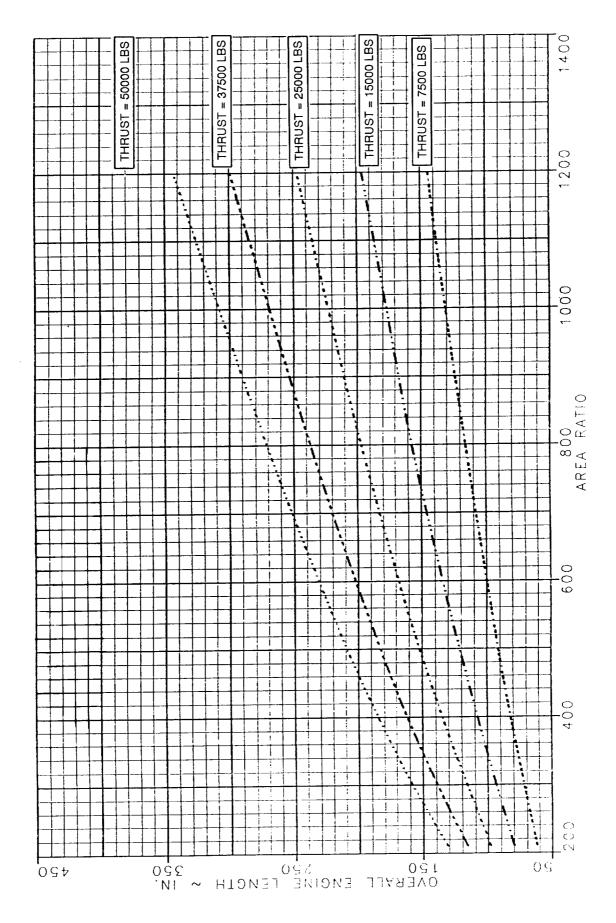
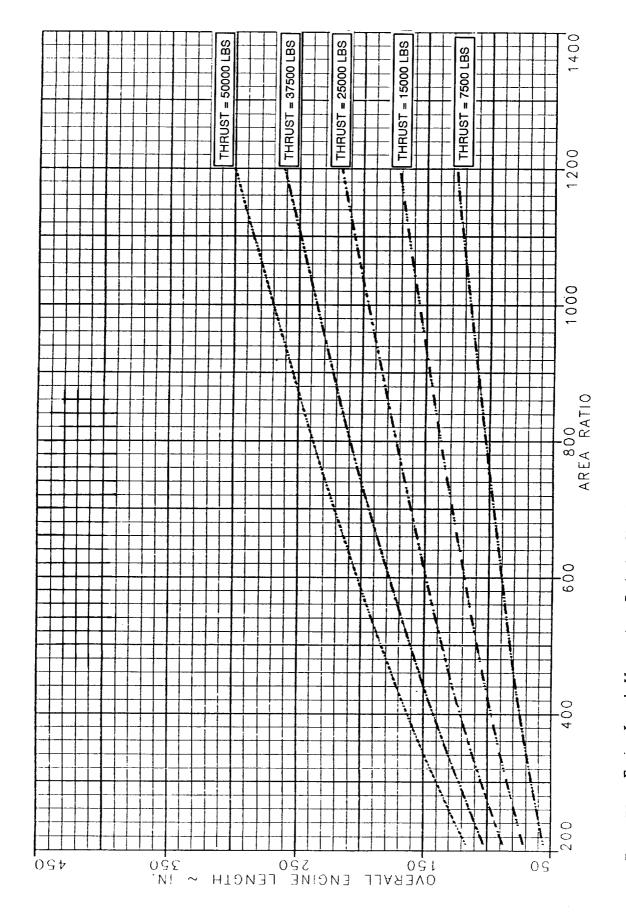
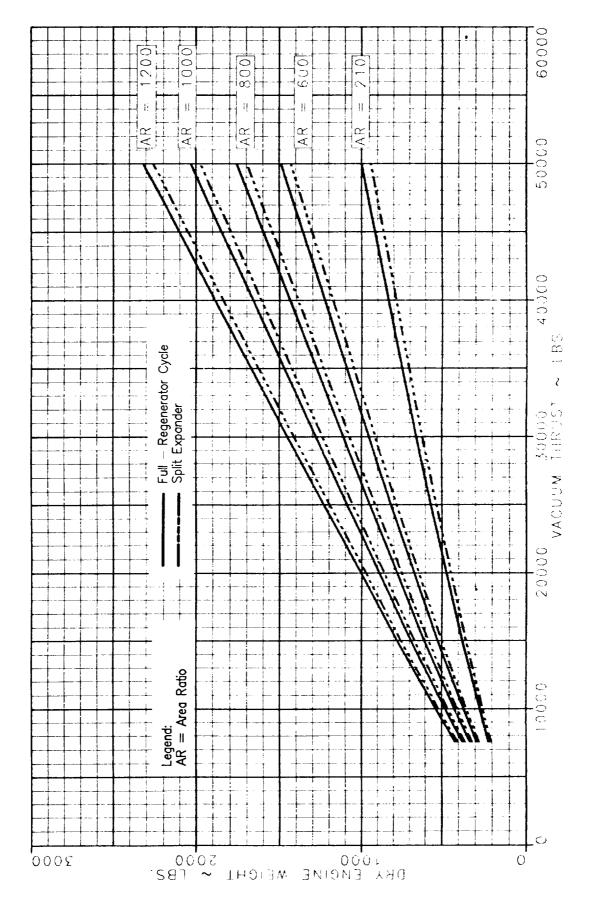
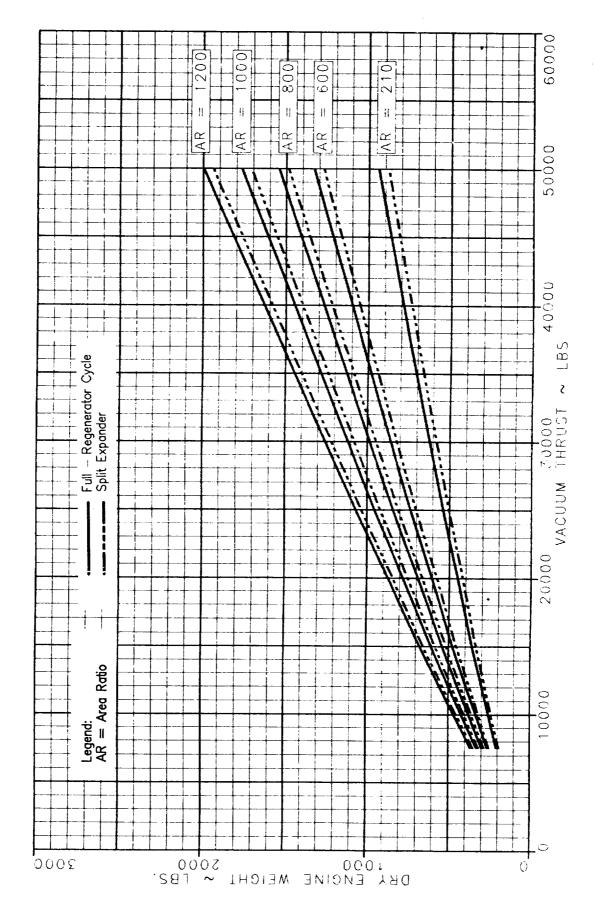
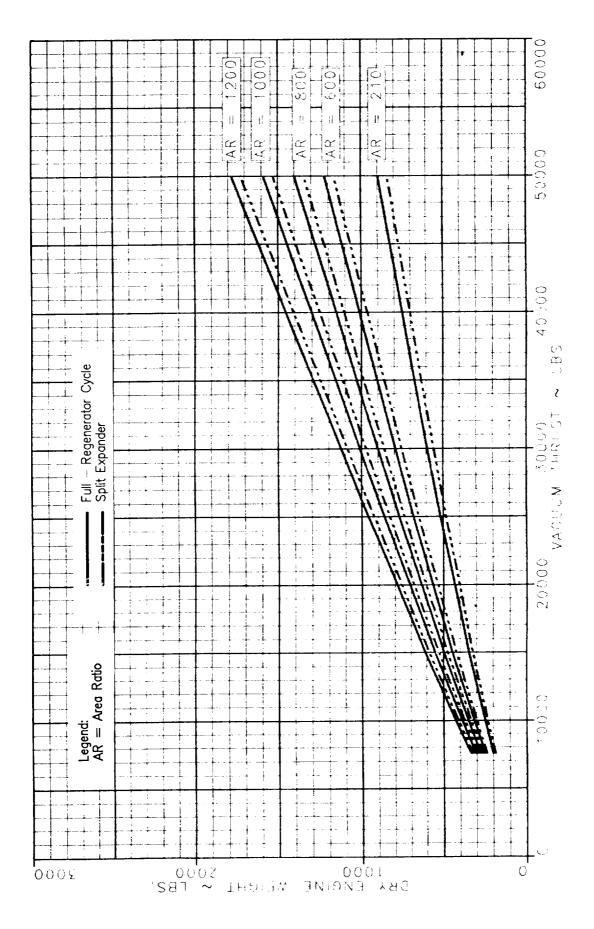


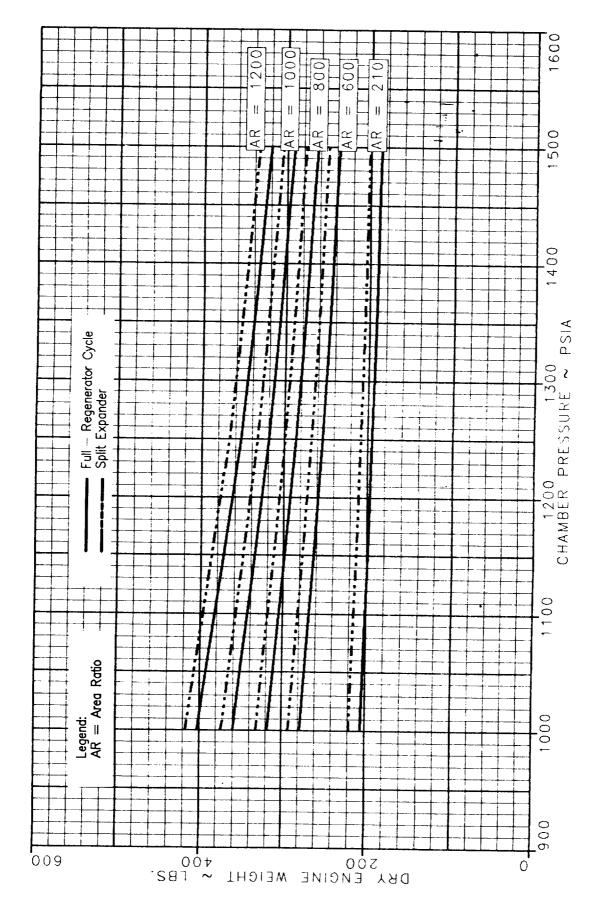
Figure 72. Engine Length Versus Thrust for Chamber Pressure = 2000 psia

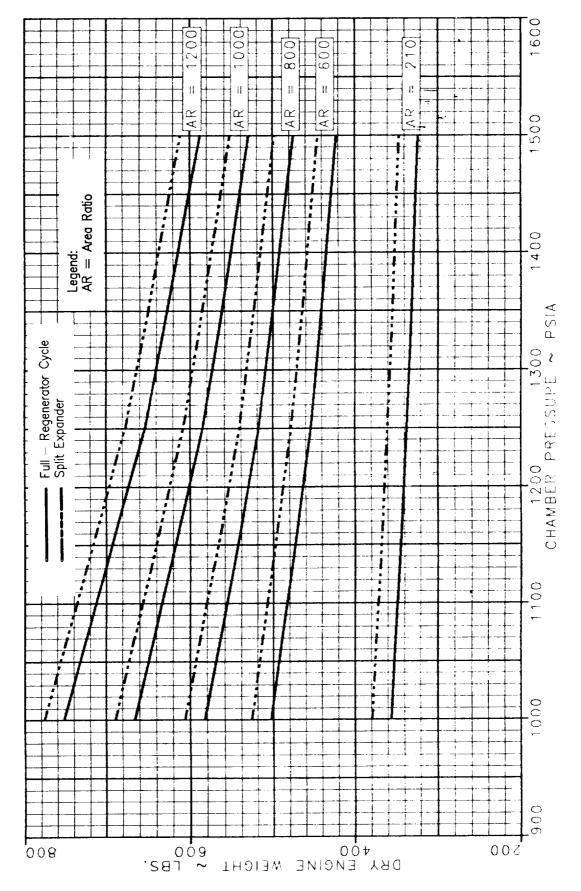




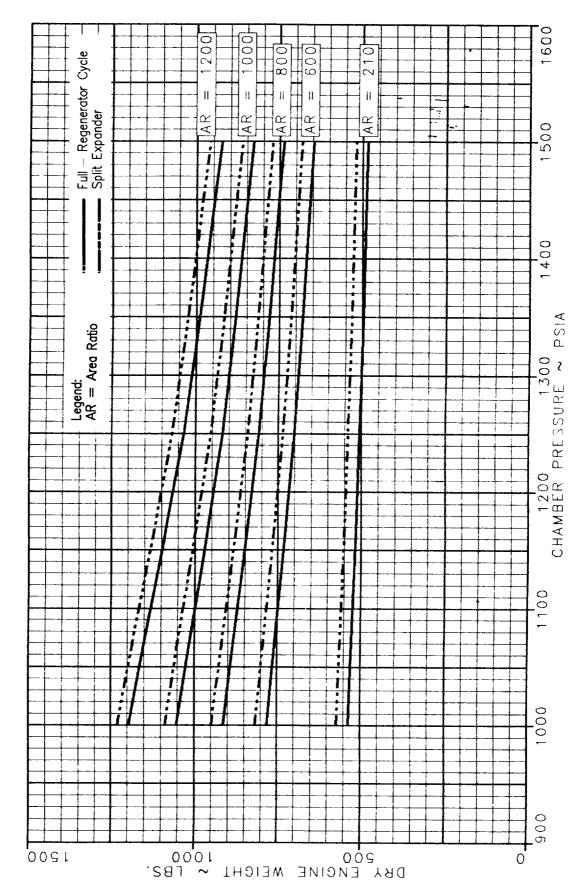

Figure 73. Engine Length Versus Area Ratio for Chamber Pressure = 1000 psia

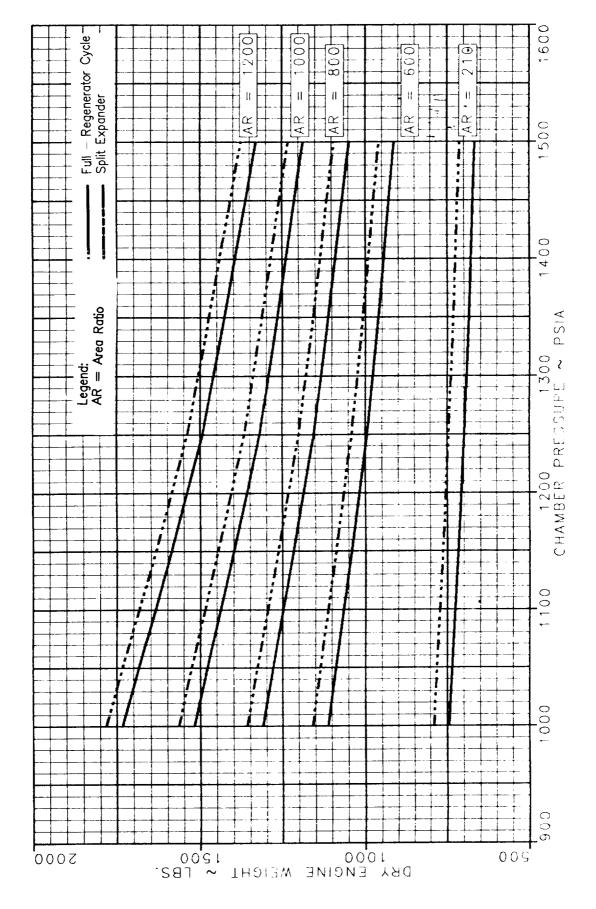

Engine Length Versus Area Ratio for Chamber Pressure = 1500 psia Figure 74.

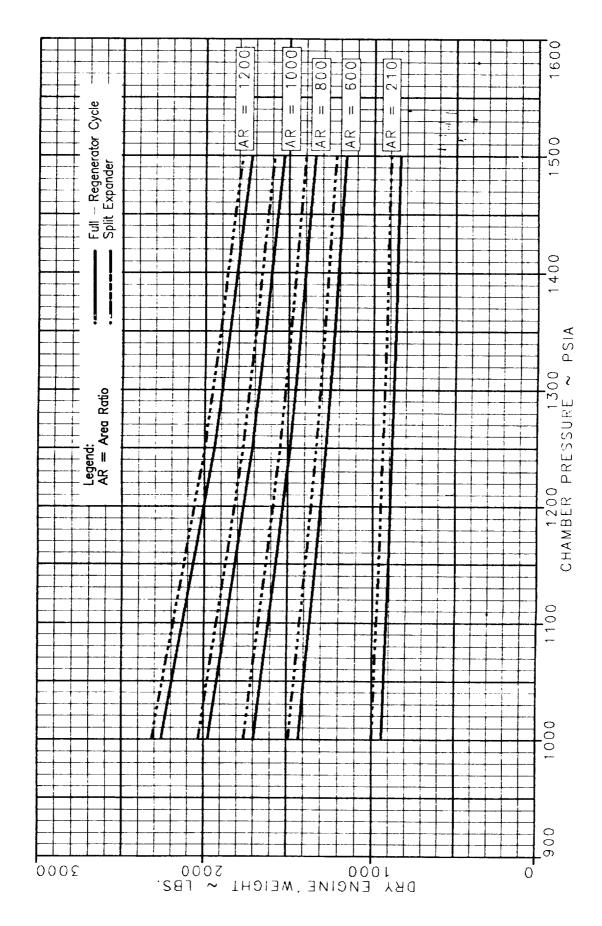

Engine Length Versus Area Ratio for Chamber Pressure = 2000 psia Figure 75.


Parametric Engine Dry Weight Data for Chamber Pressure = 1000 psia Figure 76.


Parametric Engine Dry Weight Data for Chamber Pressure = 1250 psia Figure 77.


Parametric Engine Dry Weight Data for Chamber Pressure = 1500 psia Figure 78.


Parametric Engine Dry Weight Data for Vacuum Thrust = 7500 pounds Figure 79.


Parametric Engine Dry Weight Data for Vacuum Thrust = 15,000 pounds Figure 80.

Parametric Engine Dry Weight Data for Vacuum Thrust = 25,000 pounds Figure 81.

Parametric Engine Dry Weight Data for Vacuum Thrust = 37,500 pounds Figure 82.

Parametric Engine Dry Weight Data for Vacuum Thrust = 50,000 pounds Figure 83.

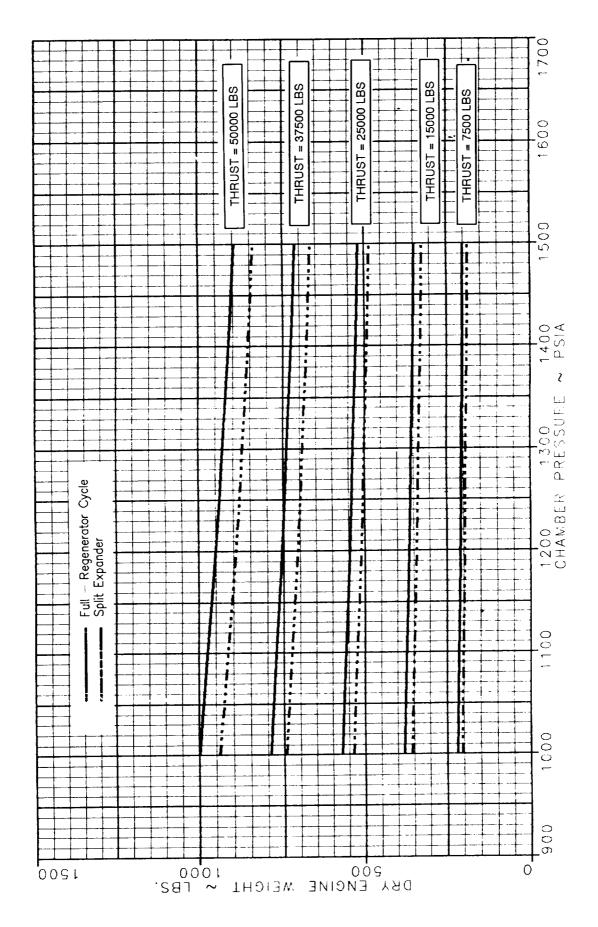


Figure 84. Parametric Engine Dry Weight Data for Area Ratio = 210

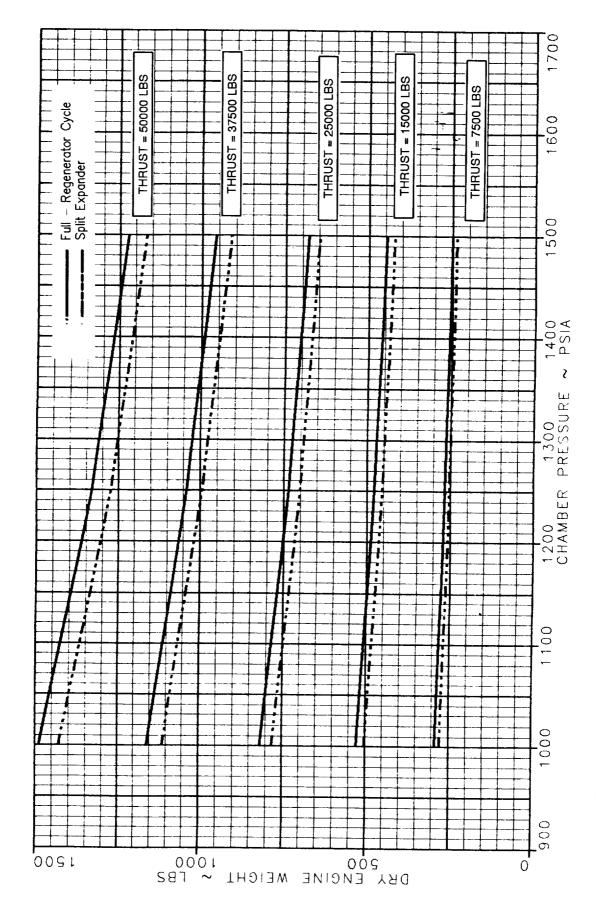
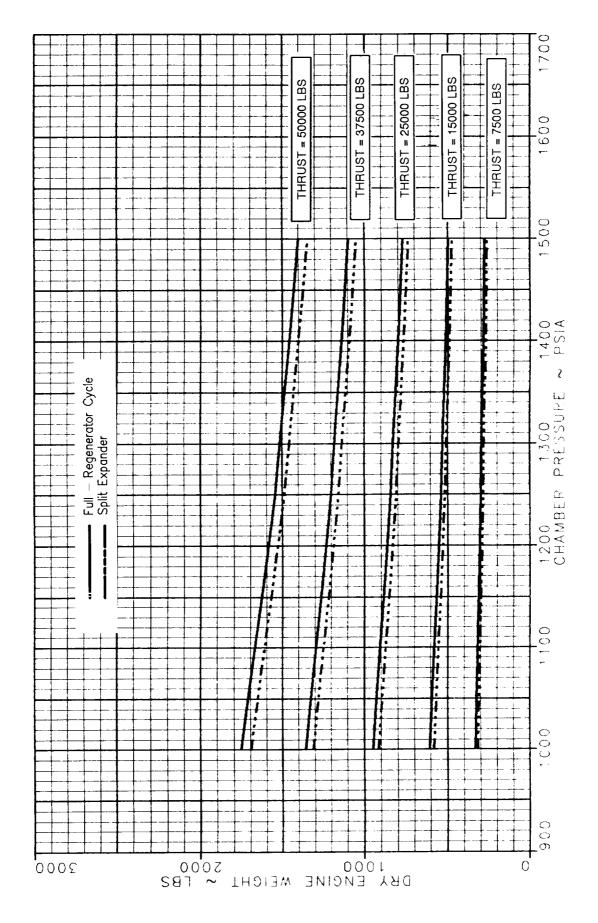



Figure 85. Parametric Engine Dry Weight Data for Area Ratio = 600

Parametric Engine Dry Weight Data for Area Ratio = 800 Figure 86.

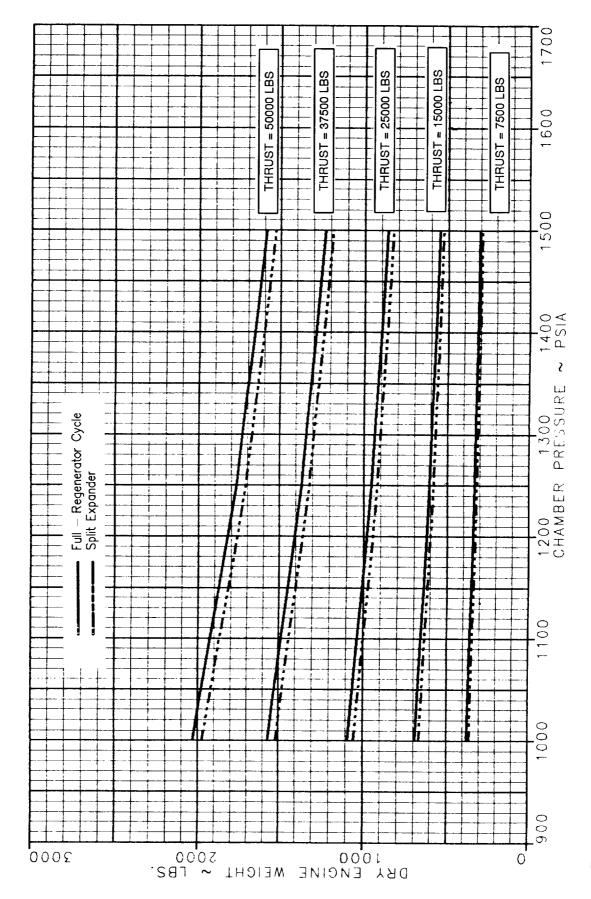


Figure 87. Parametric Engine Dry Weight Data for Area Ratio = 1000

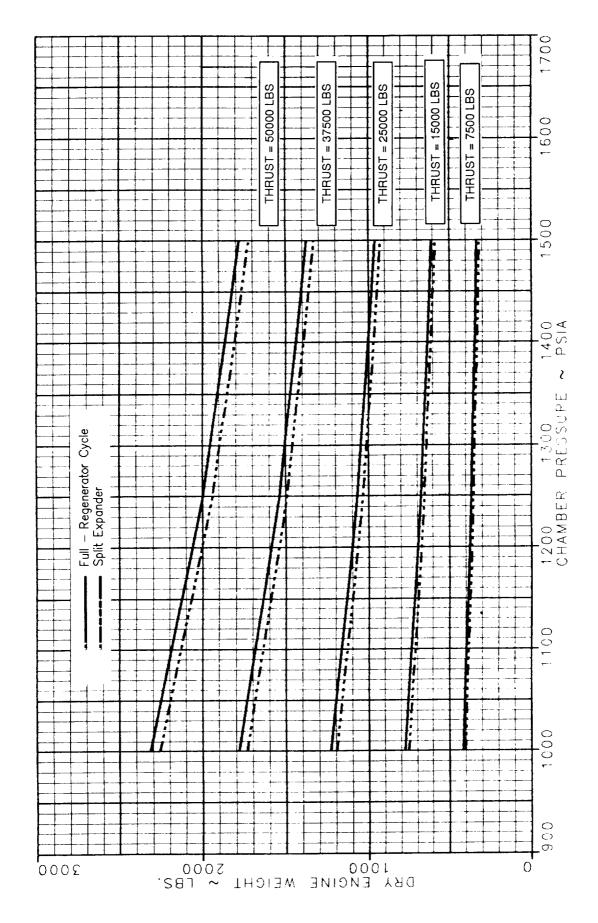


Figure 88. Parametric Engine Dry Weight Data for Area Ratio = 1200

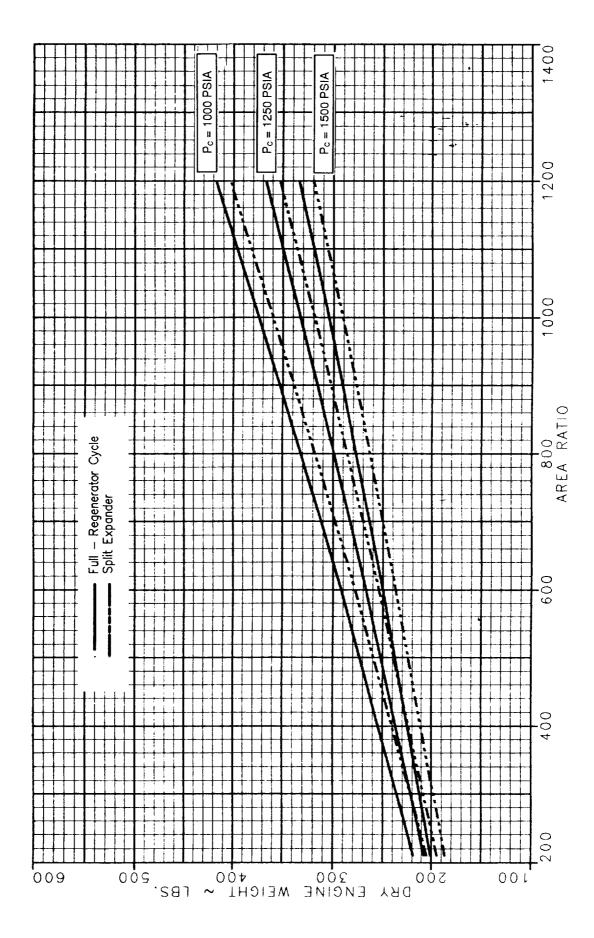


Figure 89. Parametric Engine Dry Weight Data for Thrust = 7500 lb

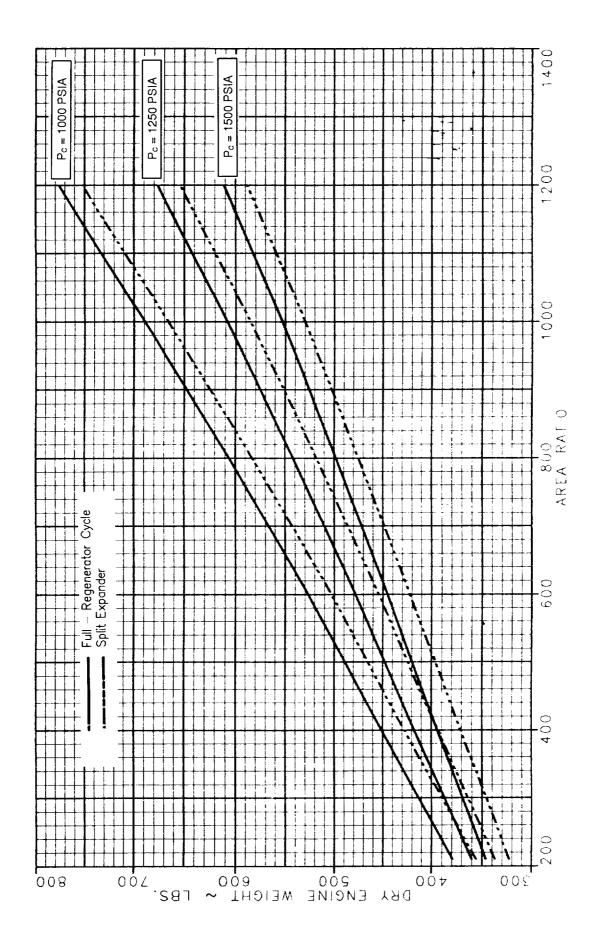


Figure 90. Parametric Engine Dry Weight Data for Thrust = 15,000 lb

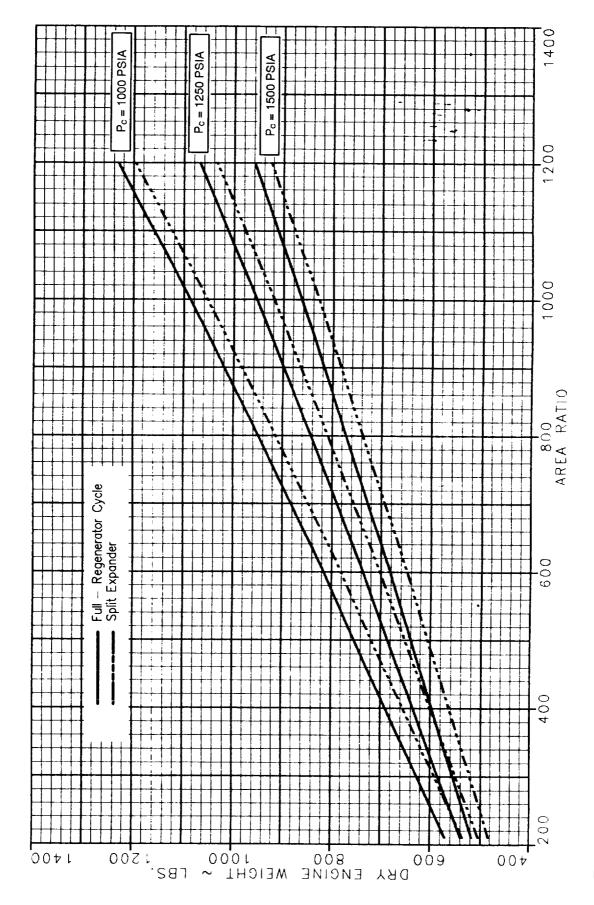


Figure 91. Parametric Engine Dry Weight Data for Thrust = 25,000 lb

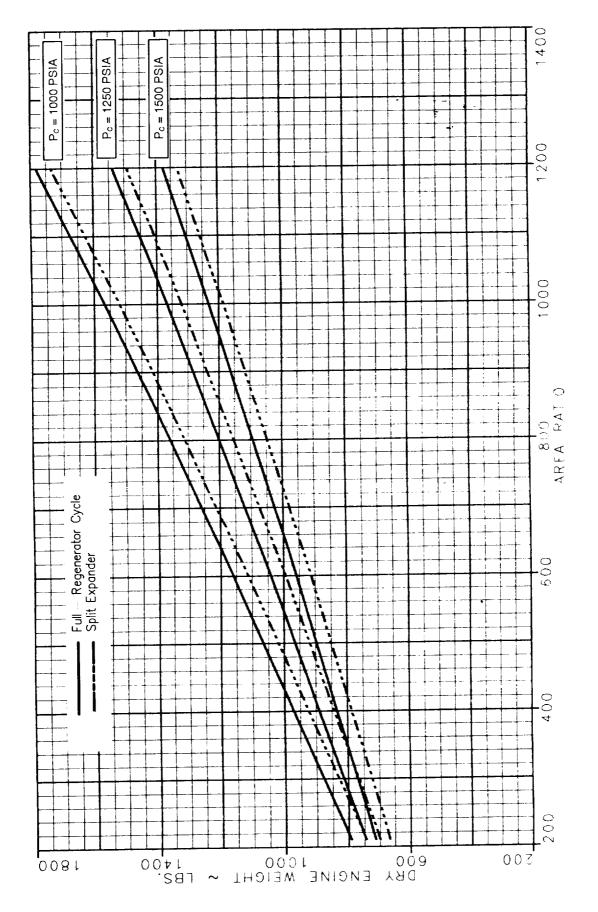


Figure 92. Parametric Engine Dry Weight Data for Thrust = 37,500 lb

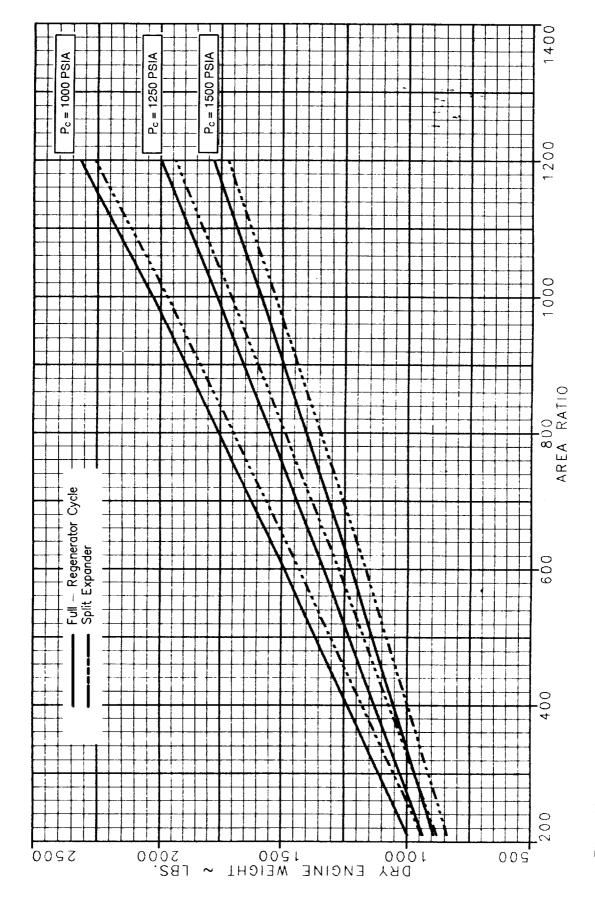
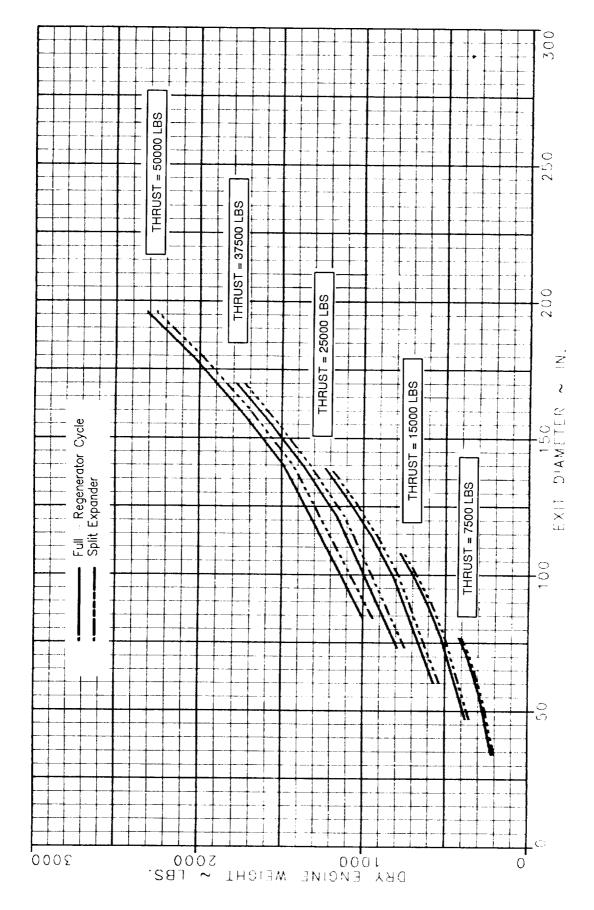



Figure 93. Parametric Engine Dry Weight Data for Thrust = 50,000 lb

Parametric Engine Dry Weight Data for Chamber Pressure = 1000 psia Figure 94.

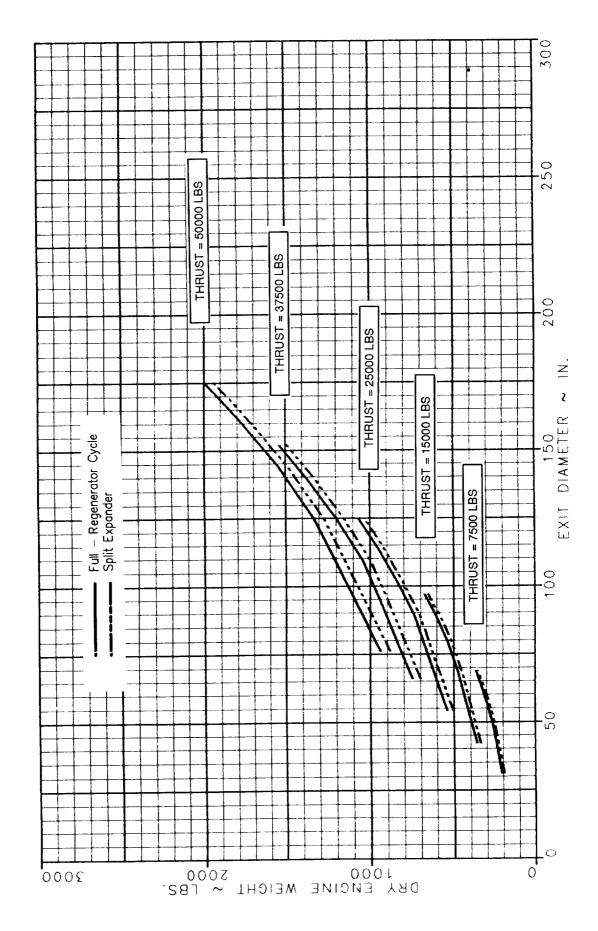
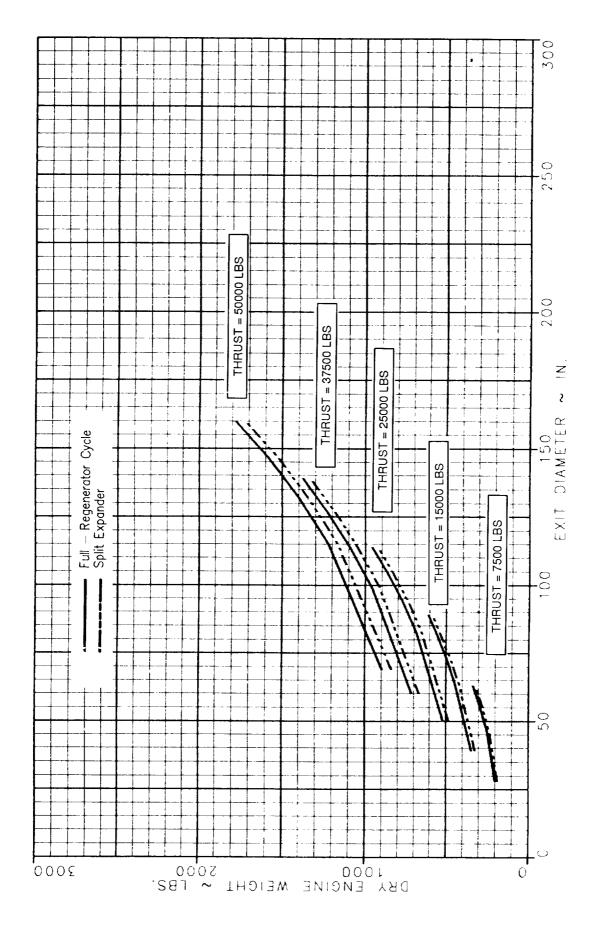
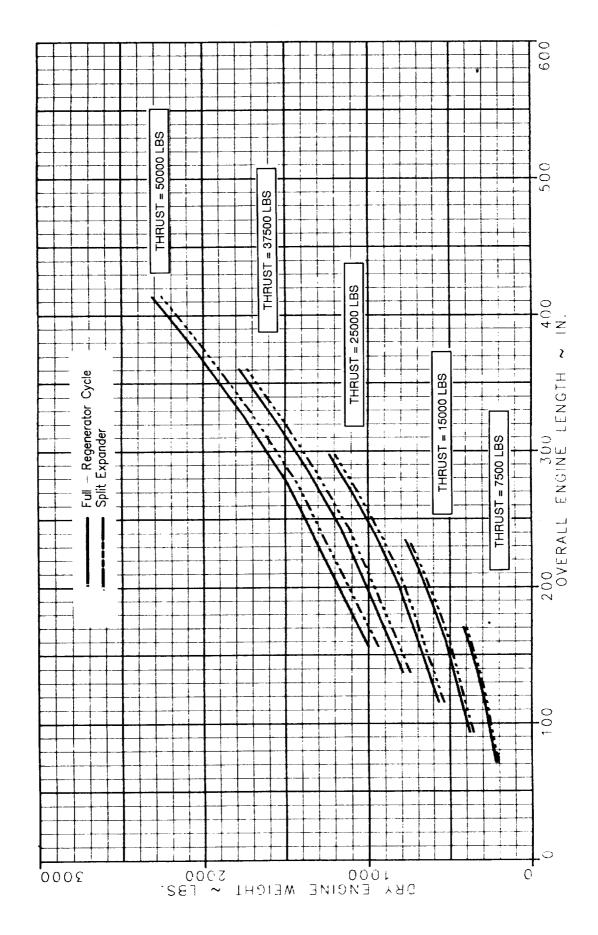




Figure 95. Parametric Engine Dry Weight Data for Chamber Pressure = 1250 psia

Parametric Engine Dry Weight Data for Chamber Pressure = 1500 psia Figure 96.

Parametric Engine Dry Weight Data for Chamber Pressure = 1000 psia Figure 97.

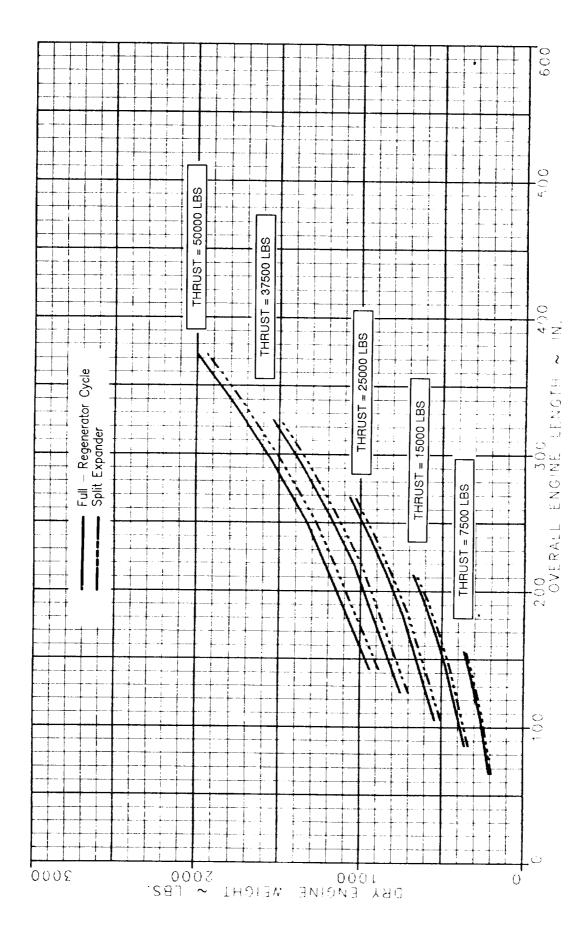


Figure 98. Parametric Engine Dry Weight Data for Chamber Pressure = 1250 psia

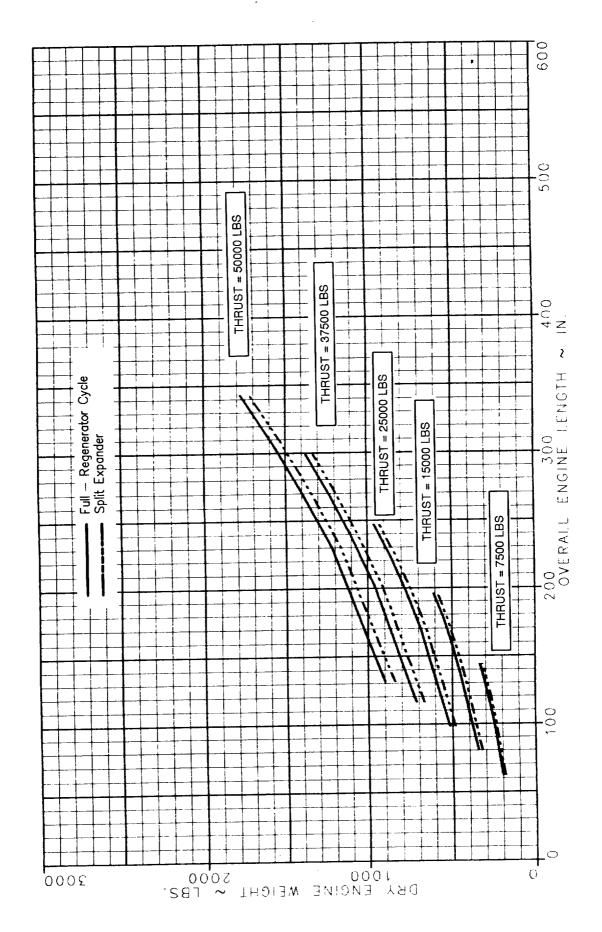
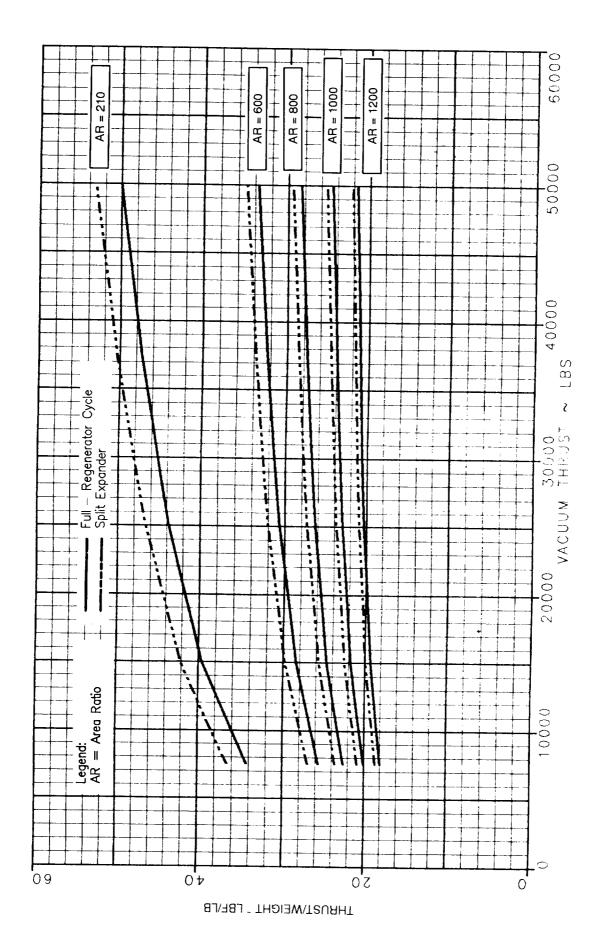



Figure 99. Parametric Engine Dry Weight Data for Chamber Pressure = 1500 psia

Parametric Engine Dry Weight Data for Chamber Pressure = 1000 psia Figure 100.

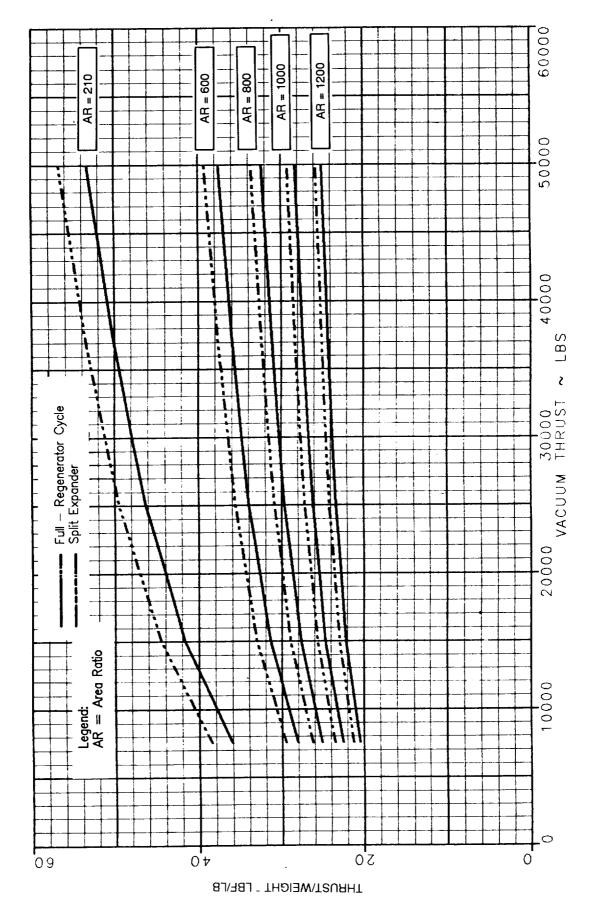
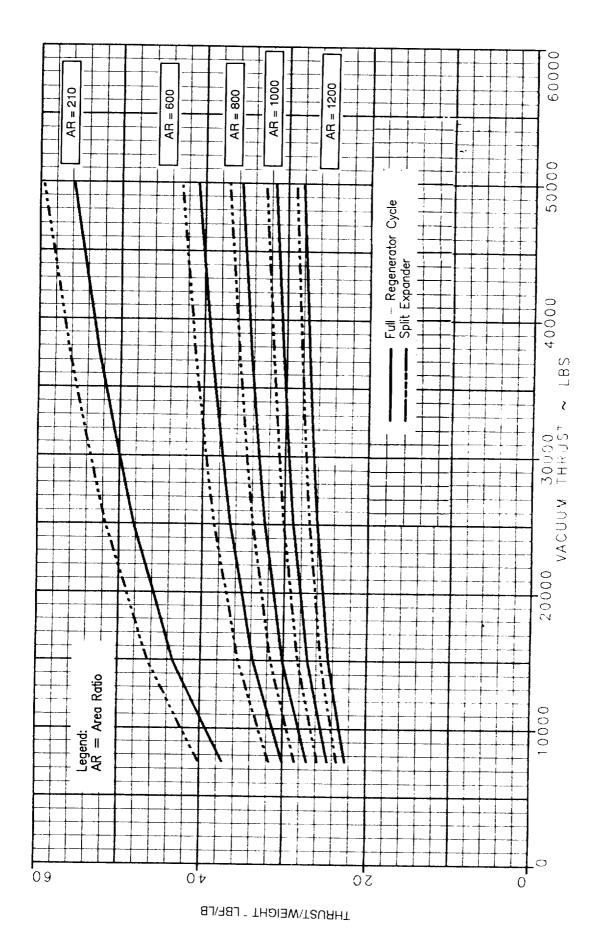



Figure 101. Parametric Engine Dry Weight Data for Chamber Pressure = 1250 psia

Parametric Engine Dry Weight Data for Chamber Pressure = 1500 psia Figure 102.

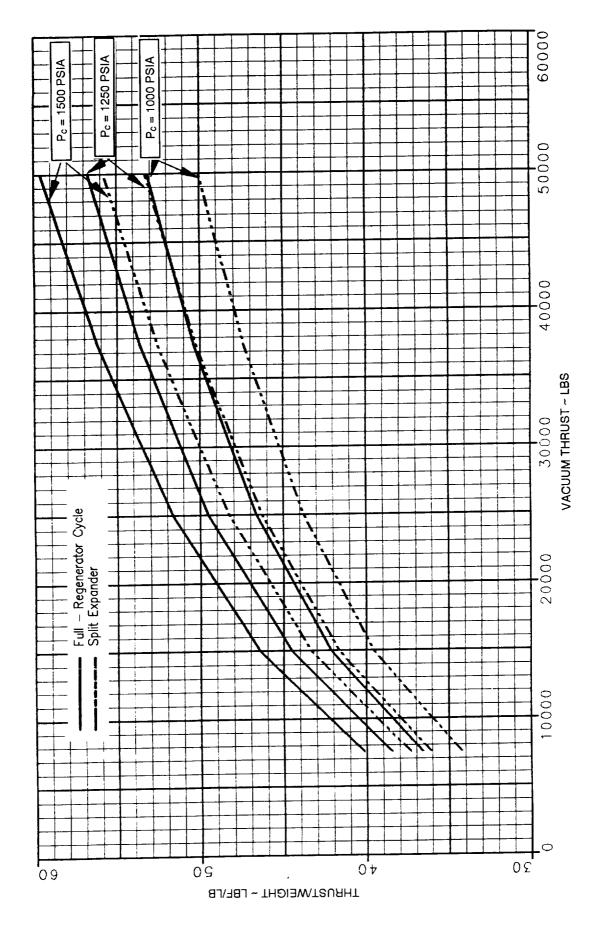


Figure 103. Parametric Engine Dry Weight Data for Area Ratio = 210

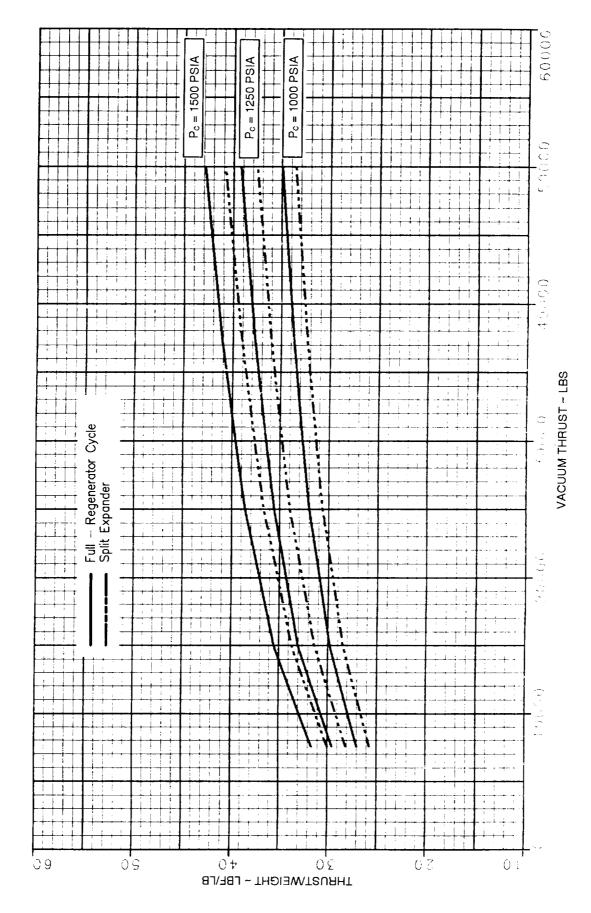


Figure 104. Parametric Engine Dry Weight Data for Area Ratio = 600

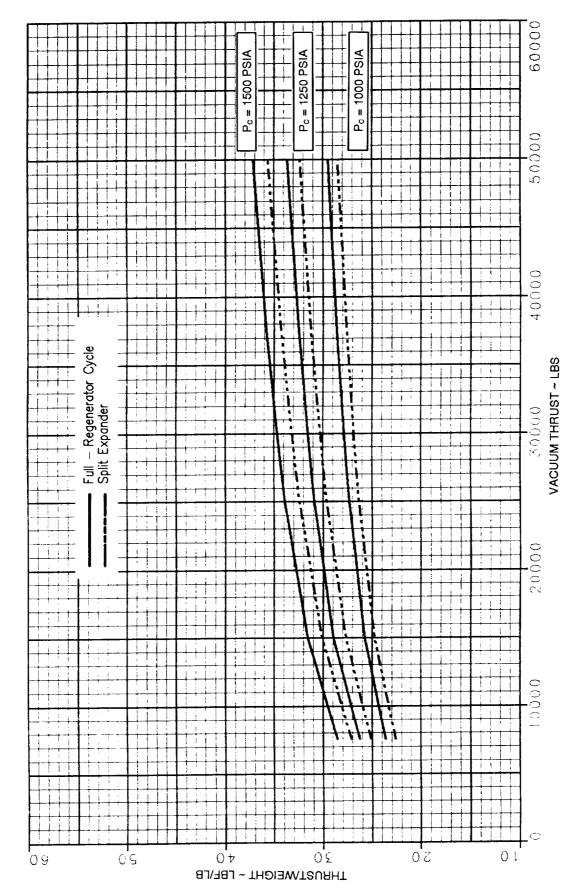


Figure 105. Parametric Engine Dry Weight Data for Area Ratio = 800

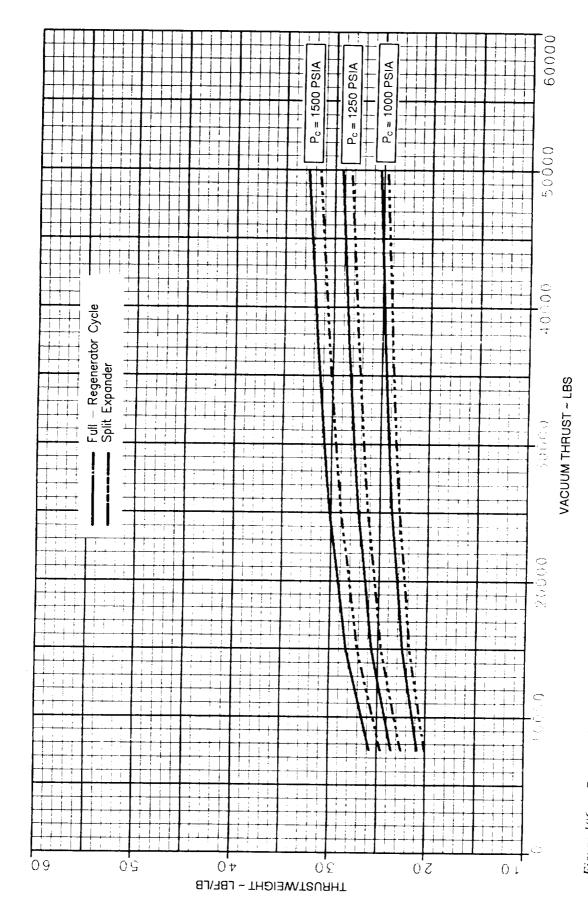


Figure 106. Parametric Engine Dry Weight Data for Area Ratio = 1000

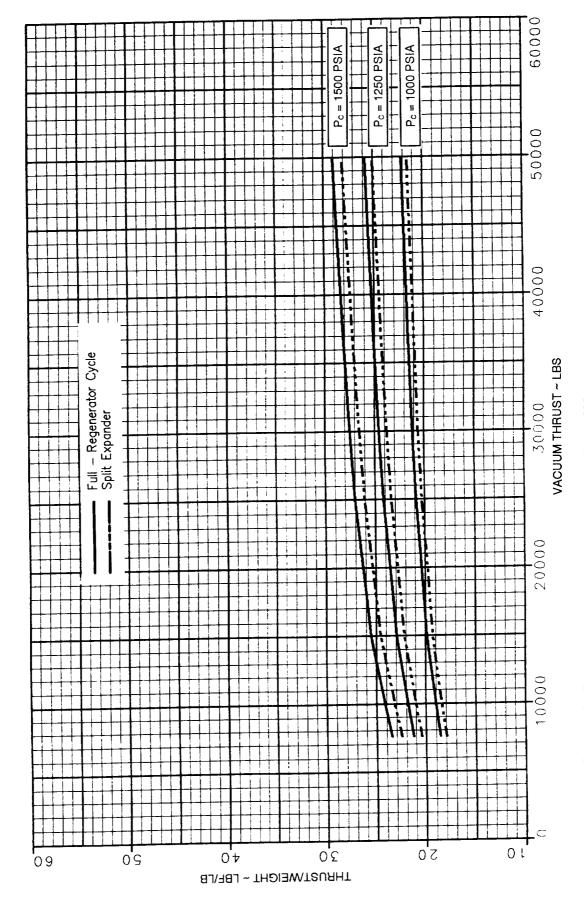


Figure 107. Parametric Engine Dry Weight Data for Area Ratio = 1200

APPENDIX B FULL-THRUST CYCLES

Full-thrust cycle data are presented in Tables 9 through 48.

TABLE 9. — FULL-EXPANDER ENGINE — 7500 LBF THRUST (COPPER TUBE CHAMBER)

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1862.5
VAC ENGINE THRUST	7500.
TOTAL ENGINE FLOW RATE	15.62
DEL. VAC. ISP	480.1
THROAT AREA	1.97
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	50.10
ENGINE MIXTURE RATIO	6.00
ETA C.	0.993
CHAMBER COOLANT DP	791.
CHAMBER COOLANT DT	785.
NOZZLE/CHAMBER Q	6571.

	■ FUEL	SYSTEM CON	ADITIONS =		
STATION	PRESS			ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	2.23	-107.5	4.37
B.P. EXIT	100.4	38.5	2.23	-103.0	4.39
PUMP INLET	100.4	\$8.5	2.23	-103.0	4.39
	1896.8	69.3	2.23	24.6	4.27
	3618.5	69.3 97.8	2.23	146.9	4.25
PUMP EXIT	5287.6	124.3	2.23	264.1	4.28
COOLANT INLET	5234.8	124.7	2.23	264.1	4.26
COOLANT EXIT	4443.6	529.5	2.23	3205.3	0.82
TBV INLET	4399.1	909.8	0.11	3205.3	0.81
TBV EXIT	2084.4	925.6	0.11	3205.3	0.40
02 TRB INLET	4399.1	909.8	2.12	3205.3	0.81
O2 TRB EXIT	4003.3	893.6	2.12	3138.4	0.76 0.76
	4003.3	B93.6	2.12	3138.4	0.75
H2 TRB EXIT	2209.2	796.1	2.12	2751.9	0.48
H2 TRB DIFFUSER		796.3	2.12	2751.9 2751.9	0.48
	2160.2	796.3	2.12 2.12	2747.1	0.48
H2 BST TRB OUT	2141.2	795.2	2.12	2747.1	0.47
H2 BST TRB DIFF		795.3	2.12	2747.1	0.47
02 BST TRB IN 02 BST TRB OUT	2104.9	795.4 794.8	2.12	2744.6	0.47
		794.8	2.12	2744.6	0.47
02 BST TRB DIFF		814.2		2767.6	0.0043
H2 TANK PRESS GOX HEAT EXCH IN		801.4	2.23	2767.6	0.46
GOX HEAT EXCH OU		801.0	2.23	2766.2	0.46
FSOV INLET	2073.9	801.0	2.23	2766.2	0.46
	2022.1	801.4	2.23	2766.2	0.45
FSOV EXIT CHAMBER INJ	2001.8	801.5	2.23		0.44
CHAMBER	1862.5				
	# OYY6	EN SYSTEM	CONDITIONS	s •	
STATION	PRESS			ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	13.4	61.1	71.17
B.P. EXIT	135.6	163.2	13.4	61.5	71.20
PUMP INLET	135.6	163.2	13.4	61.5	71.20
PUMP EXIT	3016.3	178.2	13.4	72.1	71.52
D2 TANK PRESS		400.0	0.023	204.7	0.12
OCV INLET	2986.2	178.3	13.4	72.1	71.47
OCV EXIT	2090.3	181.8	13.4	72.1	70.08
CHAMBER INJ	2048.7	182.0	13.4	72.1	70.02
CHAMBER	1862.5				
		VALVE DA			
VALVE	DELTA P	AREA	FLOW	% BYPASS	
TBV	2315.	0.01	0.11	5.00	
FSOV	52.	0.67			
OCV	896.	0.08	13.39		
		INJECTOR			
INJECTOR	DELTA P			VELOCITY	
FUEL	139.	0.47		1569.64	
LOX	207.	0.18	13.39	156.98	

TABLE 9. — FULL-EXPANDER ENGINE — 7500 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

	NERY PERFORMANCE DATA =
*************	***********
P H2 BOOST TURBINE D	F H2 BOOST PUMP +
EFFICIENCY (T/T) 0.487 EFFICIENCY (T/S) 0.333	EFFICIENCY 8,766 HORSEPOWER 14.
SPEED (RPM) 75325, MEAN DIA (IN) 0.82	SPEED (RPH) 75325.
EFF AREA (IM2) 1.03	S SPEED 3049, HEAD (FT) 2688. DIA. (IH) 1.33
U/C (ACTUAL) 0.553 MAX TIP SPEED 370.	DIA. (IN) 1.33 TIP SPEED 438.
STAGES 1	VALUE OF THE STATE
PRESS RATIO (T/T) 1.01	HEAD COEF 0.450 FLOH COEF 0.201
PRESS RATIO (T/S) 1.82 HORSEPOHER 14.	
EXIT MACH NUMBER A 10	
SPECIFIC SPEED 143.05 SPECIFIC DIMETER 0.50	
F4817481111999	*********
= M2 TURBINE =	e H2 Pump n menananana
	STAGE ONE STAGE THO STAGE THREE
EFFICIENCY (T/T) 0.80)	EFFICIENCY 0.605 0.612 0.617 HORSEPONER 404. 386. 371.
EFFICIENCY (T/T) 0.801 EFFICIENCY (T/S) 0.781 SPEED (RPH) 187500.	HORSEPOMER 404. 384. 371. SPEED (RPH) 187500. 187500. 187500. SS SPEED 9332.
HORSEPOHER 1161.	33 SPEED 9352.
HORSEPOMER 1161. MEAN DIA. (IN) 1.62 EFF AREA (IN2) 0.11	SPEED (RPH) 187508. 187500. 187500. SS SPEED 9352. S SPEED 769. 768. 795. HEAD (FT) 60127. 58236. 56326. DIA. (IM) 2.35 2.35 2.35 TIP SPEED 1925. 1926. 1925.
U/C (ACTUAL) 0.521 MAX TIP SPEED 1434.	DIA. (IN) 2.35 2.35 2.35 TIP SPEED 300
MAX TIP SPEED 1436. STAGES 3	
GAMMA 1.38 PRESS RATIO (T/T) 1.81	HEAD COCF 4.522 0.506 0.489 FLOM COCF- 0.093
PRESS RATIO (T/S) L.B4	DIAMETER RATIO 8.315
	BEARING DN 3.00E+96 SMAFT DIAMETER 16.00
SPECIFIC DIAMETER 1.39	
*************	************
* 02 BOOST TURBINE #	# 02 BOOST PURP #

EFFICIENCY (T/T) 0.804 EFFICIENCY (T/S) 0.655	EFFICIENCY 0.764 HORSEPOIER 0.
SPEED (RPM) 20104. HEAN DIA (IN) 2.25	SPEED (RPH) 20184.
EFF AREA (IN2) 1.54	S SPEED 3026. HEAD (FT) 242. DIA. (IN) 1.49
U/C (ACTUAL) 0.553 MAX TIP SPEED 238,	
21MG2]	VOL. FLON BS.
GAMMA 1.38 PRESS RATIO (T/T) 1.00	HEAD COOF 9,450 FLON COOF 9,200
PRESS RATIO (T/S) 1.01 HORSEPOWER R	
ERIT HACH NUMBER 0.85	
SPECIFIC SPEED 101.67 SPECIFIC DIAMETER 0.81	
= 02 TURBINE =	**********
PROFESSOR OF STREET	* 02 PUMP *
EFFICIENCY (T/T) 0.803	FFF ICIDARY A TAX
EFFICIENCY (T/S) 0.753 SPEED (RPM) 130652.	EFF ICIENCY 0.703 MORSEPOMER 201. SPEED (RPH) 130652. SS. SPFFB 2348)
HORSEPOHER 201.	SPEED (RPH) 130652. SS SPEED 23481.
HORSEPOHER 201. MEAN DIA (IN) 1.42 EFF AREA (IN2) 0.18	9 20100
U/C (ACTUAL) 0.503	HEAD (FT) 5799, DIA. (IN) 1.18 TIP SPEED 675, VOL. ELIDN 64
MAX TIP SPEED 994. STAGES 1. GAMMA 1.38	TIP SPEED 675. VOL. FLON 84.

PRESS RATIO (T/T) 1.10 PRESS RATIO (T/S) 1.11	HEAD COEF 0.410 FLOW COEF 0.154 DIAMETER RATIO 0.679
EXIT MACH NUMBER 0.09	BEARING IN 1 STEAM
SPECIFIC DIMETER 1.48	SWFT DIMETER 12.00

TABLE 10. — FULL-EXPANDER ENGINE — 15,000 LBF THRUST (COPPER TUBE CHAMBER)

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1696.5
VAC ENGINE THRUST	15000.
TOTAL ENGINE FLOH RATE	31.25
DEL. VAC. ISP	480.0
THROAT AREA	4.32
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	74.21
ENGINE MIXTURE RATIO	6.00
ETA C	0.993
CHAMBER COOLANT DP	579.
CHAMBER COOLANT DT	599.
NOZZLE/CHAMBER Q	10185.

•					
	a EINFI S	SYSTEM CON	DITIONS .		
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	4.47	-107.5	4.37
B.P. EXIT	100.6	38.5	4.47	-103.0	4.39
PLMP INLET	100.6	38.5	4.47	-103.0	4.39
IST STAGE EXIT	1843.1	64.7	4.47	10.4	4.38
2ND STAGE EXIT	3556.9	89.5	4.47	121.3	4.40
PUMP EXIT	5250.8	113.0	4.47	229.5	4.46
COOLANT INLET	5198.3	113.5	4.47	229.5	4.44
COOLANT EXIT	4619.0	712.1	4.47	2508.0	1.06
TBV INLET	4572.8	712.4	0.22	2508.0	1.05
TBV EXIT	1898.6	729.1	0.22	2508.0	0.46
02 TRB INLET	4572.8	712.4	4.25	2508.0	1.05
02 TRB EXIT	4123.2	698.9	4.25	2449.6	0.98 0.98
H2 TRB INLET	4123.2	698.9	4.25	2449.6	0.58
H2 TRB EXIT	2026.9	613.0	4.25	2099.5	0.57
HZ TRB DIFFUSER	1993.6	613.2	4.25	2099.5 2099.5	0.57
H2 BST TRB IN	1973.7	613.2	4.25	2094.8	0.56
H2 BST TRB OUT	1952.9	612.1	4.25	2094.8	0.56
H2 BST TRB DIFF	1938.9	612.2	4.25 4.25	2094.8	0.55
02 BST TRB IN	1919.5	612.3	4.25	2092.2	0.55
02 BST TRB DUT	1909.6	611.6	4.25	2092.2	0.55
02 BST TRB DIFF	1908.1	611.6	0.0058	2113.0	0.0057
HZ TANK PRESS	18.6	627.2 617.5	4.46	2113.0	0.54
GOX HEAT EXCH IN		617.3	4.46	2111.6	0.54
GOX HEAT EXCH OUT		617.1	4.46	2111.6	0.54
FSOV INLET	1889.1	617.4	4.46	2111.6	0.53
FSOV EXIT	1841.8 1823.3	617.5	4.46	2111.6	0.52
CHAMBER INJ	1696.5	027.12			
CHAMBER	1070.5				
	# OXYO		CONDITION	S =	DENSITY
STATION	PRESS	TEMP	FLON	ENTHALPY	71.17
B.P. INLET	16.0	162.7	26.8	61.3	71.20
B.P. EXIT	135.6	163.2	26.8	61.5	71.20
PUMP INLET	135.6	163.2	26.8	61.5 70.7	71.63
PUMP EXIT	2747.5	175.9	26.8	204.7	0.12
OZ TANK PRESS		400.0		70.7	71.59
OCV INLET	2720.0	176.0	26.8	70.7	70.32
OCV EXIT	1904.0	179.1	26.8	70.7	70.26
CHAMBER INJ	1866.1	179.3	26.8	, , , , ,	
CHAMBER	1696.5				
		WALVE D	ATA =		
VALVE	DELTA P		FLOH	\$ BYPASS	
TBV	2674.	0.01	0.22	5.00	
FSOV	47.	1.30	4.46		
OCV	816.	0.17	26.78		
T					
		INJECTOR		UEL DOTTY	
INJECTOR	DELTA P		FLON	VELOCITY	
FUEL	127.	0.90	4.46	1388.26 149.56	
LOX	188.	0.37	26.78	147.30	

TABLE 10. — FULL-EXPANDER ENGINE — 15,000 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

* TURBOHACHI	NERY PERFORMANCE DATA .

. HZ BOOST TURBINE .	* H2 BOOST PUMP =
*************	* 12 50031 FOF 8
EFFICIENCY (T/T) 0.746	EFFICIENCY 0.766
EFFICIENCY (T/S) 0.391	HORSEPONEN 29,
SPEED (RPM) 53300.	SPEED (RPM) 53300.
MEAN DIA (IH) 1,16 EFF AREA (IH2) 1,80	\$ SPEED 3048.
2. 44.	HEAD (FT) 2693. DIA. (IN) 1.89
U/C (ACTUAL) 0.550 MAX TIP SPEED 390.	
STAGES 1	TIP SPEED 439.
GAPPA 1.45	VOL. FLOM 457. HEAD COEF 9.450
PRESS RATIO (T/T) 1.01	FLOW COEF 9.201
PRESS RATIO (T/S) 1.02	V.111
HORSEPONER 29.	
EXIT MACH HUMBER 0.10 SPECIFIC SPEED 148.19	
SPECIFIC DIAMETER 0.52	
202224472000E	
* H2 TURBINE *	* H2 PUMP =
**********	* 72 700 0
	STAGE ONE STAGE THO STAGE THREE
	HASSIBORE WEDDONESS DESCRIPTION
EFFICIENCY (T/T) 8.798	EFFICIENCY 0.649 0.651 0.453
EFFICIENCY (T/S) 0.774	HORSEPOHER 717. 781. 685.
SPEED (RPM) 136363.	SPEED (RPH) 136363. 136363. 136363.
	33 G CLS 7387.
MEAN DIA. (IN) 2.33 EFF AREA (IN2) 0.19 U/C (ACTUAL) 0.469 MAX TIP SPEED 1481.	S SPEED 789, 797, 885, HEAD (FT) 57278, 56200, 55023.
INC (ACTUAL) 0.19	HEAD (FT) 57278. 56200. 55023.
MAX TIP SPEED 1481	DIA. (IN) 3.12 3.12 3.12 TIP SPEED 1859, 1859, 1859,
STAGES 2	
GAPM 1.45	HEAD COSE A COS A COS
PRESS RATIO (T/T) 2.85	FLON COEF 0.096
PRESS RATIO (T/S) 2.08	DIAMETER RATIO 9.331
EXIT MACH HUMBER 0.15	BEARING DN 3.00E+06
SPECIFIC SPEED 39.56	SHAFT DIAMETER 22.00
SPECIFIC DIAMETER 1.66	

. OZ BOOST TURBINE .	* OZ BOOST PLPP *
**************	• 02 BOOS POP •
EFFICIENCY (T/T) 8.826	EFFICIENCY 0.764
EFFICIENCY (T/S) 0.607	EFFICIENCY 0.764 HORSEPONER 15.
SPEED (RPH) 14272.	SPEED (RPH) 14272.
MEAN DIA (IN) 3.18 EFF AMEA (IN2) 2.64	\$ SPEED 3024.
	HEAD (FT) 242. DIA. (IN) 2.11
MAX TIP SPEED 235.	
STAGES 1	TIP SPEED 132. VOL. FLOM 169.
GAPA 1.45	HEAD COEF 0.450
	FLON COEF 8.200
PRESS RATIO (T/S) 1.01	*****
HORSEPONER 15.	
EXIT MACH HUMBER 0.03 SPECIFIC SPEED 96.92	
SPECIFIC DIMETER 0.86	
**********	********
. 02 TURBINE .	* 02 PUMP *

EFFICIENCY (T/T) 0.817	EFFICIENCY 0.730
EFFICIENCY (T/S) 8,771	HORSEPONER 351.
SPEED (RPH) 87749.	SPEED (RPH) 87749.
HORSEPONER 351.	SS SPEED 22303.
MEAN DIA (IN) 2.33	S SPEED 1845.
EFF AREA (IN2) 0.29	HEAD (FT) 5249. DIA. (IN) 1.66
U/C (ACTUAL) 0.523 MAX TIP SPEED 952.	
MAX TIP SPEED 952. STAGES 1	TIP SPEED 634.
GAPPA 1.45	VOL. FLON 148. HEAD COEF 8.428
PRESS RATIO (T/T) 1.11	FLON COEF 0.155
PRESS RATIO (T/S) 1.12	DIAMETER RATIO 0.602
EXIT HACH HUNGER 0.08	BEARING DN 1.40E+94
SPECIFIC SPEED 45.33	SHAFT DIAMETER 16.08
SPECIFIC DIAMETER 1.65	

TABLE 11. — FULL-EXPANDER ENGINE — 25,000 LBF THRUST (COPPER TUBE CHAMBER)

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1603.4
VAC ENGINE THRUST	25000.
TOTAL ENGINE FLON RATE	52.08
DEL. VAC. ISP	480.0
THROAT AREA	7.62
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	98.52
ENGINE HIXTURE RATIO	6.00
ETA C.	0.993
CHAMBER COOLANT DP	495.
CHAMBER COOLANT DT	505.
NOZZLE/CHAMBER Q	14356.

	. FIFE	SYSTEM CON	DITIONS #		
STATION	PRESS	TEMP	FLON	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	7.45	-107.5	4.37
B.P. EXIT	100.9	38.5	7.45	-103.0	4.39
PUMP INLET	100.9	38.5	7.45	-103.0	4.39
IST STAGE EXIT	1458.6	54.9	7.45	-25.5	4.50
2ND STAGE EXIT	2831.9	70.7	7.45	51.8	4.58
PUMP EXIT	4222.8	84.2	7.45	128.6	4.67
COOLANT INLET	4180.6	86.6	7.45	128.6	4.65 1.02
COOLANT EXIT	3685.4	591.9	7.45	2055.1	1.01
TBV INLET	3648.5	592.1	0.37	2055.1 2055.1	0.53
TBV EXIT	1795.5	601.9	0.37	2055.1	1.01
02 TRB IMLET	3648.5	592.1	7.08	2001.5	0.94
02 TRB EXIT	3266.7	579.5	7.08 7.08	2001.5	0.94
HZ TRB INLET	3266.7	579.5	7.08	1757.7	0.64
HE TRB EXIT	1925.6	519.5 519.6	7.08	1757.7	0.63
HZ TRB DIFFUSER	1888.2	517.6	7.08	1757.7	0.63
HZ BST TRB IN	1869.3	518.5	7.08	1753.0	0.62
H2 BST TRB OUT	1848.2 1834.8	518.6	7.08	1753.0	0.62
HZ BST TRB DIFF		518.6	7.08	1753.0	0.61
02 BST TRB IN	1816.4 1806.0	518.0	7.08	1750.4	0.61
02 BST TRB OUT 02 BST TRB DIFF	1804.5	518.0	7.08	1750.4	0.61
02 BST TRB DIFF	18.6	529.4	0.0113	1765.6	0.0066
GOX HEAT EXCH IN		522.2	7.44	1765.6	0.60
GOX HEAT EXCH OUT		521.9	7.44	1764.3	0.60
FSOV INLET	1786.5	521.9	7.44	1764.3	0.60
FSOV EXIT	1741.9	522.1	7.44	1764.3	0.58
CHAMBER INJ	1724.3	522.2	7.44	1764.3	0.58
CHAMBER	1603.6				
G 12 12 12 1					
	- ~~	YGEN SYSTEM	COMBITION	s •	
		TEMP	FLON	ENTHALPY	DENSITY
STATION	PRESS 16.0	162.7	44.7	61.1	71.17
B.P. INLET		163.2	44.7	61.5	71.28
B.P. EXIT	135.6 135.6	163.2	44.7	61.5	71.20
PUMP INLET	2596.8	174.6	44.7	70.0	71.69
PUMP EXIT	16.0	400.0	0.076	204.7	0.12
02 TANK PRESS	2570.9	174.7	44.6	70.0	71.65
OCV INLET	1799.6	177.6	44.6	70.0	70.45
CHAMBER INJ	1763.8	177.8	44.6	70.0	70.39
CHAMBER	1603.4				
CHARDON					
		- VALVE D		* BYPASS	
VALVE	DELTA P		FLOH 0.37	5.00	
TBV	1853.		7.44	3.00	
FSOV	45.		44.64		
OCA	771.	0.28	77.07		
		# INJECTOR	DATA =		
INJECTOR	DELTA F		FLOH	VELOC1TY	
FUEL	121		7.44	1291.05	
LOX	178	0.63	44.64	145.27	

TABLE 11. — FULL-EXPANDER ENGINE — 25,000 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

•	TURBONACHI	INERY PERFORMANCE	DATA .		
• H2 BOOST TI	******	•	H2 BOOST P		
*********			********		
EFFICIENCY (T/T)	0.823	EFF 1	CIENCY	0.765	
EFFICIENCY (T/S)		HORS	20ER	48.	
SPEED (RPH) HEAN DIA (IN)	1.44	SPEE	D (RPH) EED	41350.	
EFF AREA (IN2)	2.82	HEAD	(FT)	3045. 2703.	
U/C (ACTUAL) MAX TIP SPEED	0.538	DIA.	(FT) (IN)	2.43	
		TIP	SPEED FLOW	440. 762.	
GAMMA PRESS RATIO (T/T) PRESS RATIO (T/S)	1.34	HEAD	COEF	0.450	
PRESS RATIO (T/T)	1.01	FLON	COEF	0.450 0.201	
HORSEPONER	48.				
EXIT MACH MUMBER	0.11				
SPECIFIC SPEED SPECIFIC DIAMETER					
*********			*********		
. HZ TURBINE			. HZ PUMP	•	
**********	•		2141411111		
					STAGE THREE
EFFICIENCY (T/T) EFFICIENCY (T/S) SPEED (RPH) HORSEPOMER HEAN DIA. (IN) EFF AREA (IN2) U/C (ACTUAL) HAX TIP SPEED	0.063	EFF1C1ENCY	0.726	0.725	8.724
SPEED (RPH)	125000.	MORSEPONER	817.	813.	810.
HORSEPONER	2441.	SS SPEED	11310.	125000.	125000.
HEAN DIA. (IN)	2.36	S SPEED	1126.	1121.	1115.
U/C (ACTUAL)	0.33	HEAD (FT)	43769.	43508.	43284.
HAX TIP SPEED		TIP SPEED	1671.	1670.	3.06 1671.
	2	VOL. FLON	/43.	730.	717.
GAMMA PRESS RATIO (T/T) PRESS RATIO (T/S) EXIT MACH NUMBER	1.34	HEAD COEF FI OM COEF	8.504 0.118	0.502	8.499
PRESS RATIO (T/S)	1.74	DIAMETER RATIO	0.412		
EXIT MACH MUMBER SPECIFIC SPEED	0.18	HEAD COEF FLOW COEF DIAMETER RATIO BEARING ON SHAFT DIAMETER	3.00E+06		
SPECIFIC DIMETER	1.26	SHAFT DIMMETER	24.00		

# 02 BOOST TUR			02 BOOST PU		
**********	******		**********		
EFFICIENCY (T/T)		EFF 1C	IDICY	0.764	
EFFICIENCY (T/S)		HORSE	POMER	26.	
SPEED (RPH) MEAN DIA (IN)	4.11	3/220	(RPH)	26. 11055. 3026.	
EFF AREA (IN2)	4.06	HEAD	(FT)	242.	
U/C (ACTUAL)		DIA.	(FT) (IN)	2.72	
MAX TIP SPEED STAGES	233. 1	TIP SP VOL. F	TEU .	132. 282.	
GAHNA	1.34	MEAN A	~~~	0.450	
GAMMA PRESS RATIO (T/T) PRESS RATIO (T/S)	1.01	FLOM (X0EF	0.200	
HORSEPOHER	26.				
EXIT MACH HUMBER SPECIFIC SPEED	0.04				
SPECIFIC DIAMETER					
			٠,		

* 02 TURBINE *			02 PUMP #		
***************************************		•	********		
EFFICIENCY (T/T)		EFF ICI		0.747	
EFFICIENCY (T/S) SPEED (RPH)		HORSEP	(004)	538. 65861.	
HORSEPOHER	538.	22 256		21611.	
MEAN DIA (IN) EFF AREA (IN2)	2.36			1870.	
U/C (ACTUAL)	0.54 0.414	HEAD BIA	(FT) (IN)	4942. 2.12	
MAX TIP SPEED	746.	TIP SPI	EED	611.	
STAGES GAPPIA	1	VOL. FI		280.	
PRESS RATIO (T/T)	1.34	HEAD CI FLOH CI		0.426 0.156	
PRESS RATIO (T/S)	1.13		ER RATIO	0.156	
EXIT MACH NUMBER SPECIFIC SPEED	0.12	BEARING	3 DN 1.	45E+06	
SPECIFIC SPEED	47.79 1.27	SHAFT I	LAMETER	22.00	

TABLE 12. — FULL-EXPANDER ENGINE — 37,500 LBF THRUST (COPPER TUBE CHAMBER)

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1502.9
VAC ENGINE THRUST	37500.
TOTAL ENGINE FLOH RATE	78.13
DEL. VAC. ISP	480.0
THROAT AREA	12.19
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	124.61
ENGINE MIXTURE RATIO	6.00
ETA C#	0.993
CHAMBER COOLANT DP	447.
CHAMBER COOLANT DT	420.
NOZZLE/CHAMBER Q	18018.

•						
	* FUEL	SYSTEM CON	DITIONS #			
HOITATZ	PRESS	TEMP	FLOM	ENTHALPY	DENSITY	
B.P. INLET	18.6	37.4	11.18	-107.5	4.37	
B.P. EXIT	100.3	38.5	11.18	-103.0	4.39	
PUMP INLET	100.3	38.5	11.18	-103.0	4.39	
IST STAGE EXIT	1523.0	. 55.0	11.18	-23.6	4.52	
2ND STAGE EXIT	2971.B	70.9	11.18	55.8	4.63	
PUMP EXIT	4445.4	86.4	11.18	135.0	4.72	
COOLANT INLET	4400.9	86.8	11.18	135.0	4.70	
COOLANT EXIT	3953.5	507.0	11.18	1746.4	1.25	
TBV INLET	3914.0	507.2	8.54	1746.4	1.24	
TBV EXIT	1682.1	517.4	0.56	1746.4	1.24	
02 TRB INLET	3914.0	507.2	10.62	1746.4	1.14	
O2 TRB EXIT	3491.1	495.9	10.62	1697.1 1697.1	1.14	
H2 TRB INLET	3491.1	495.9	10.62	1446.6	0.72	
H2 TRB EXIT	1818.3	435.6	10.62	1446.6	0.71	
H2 TRB DIFFUSER	1774.3	435.7	10.62	1446.6	0.71	
H2 BST TRB IN	1756.6	435.7	10.62	1441.9	0.69	
HZ BST TRB OUT	1733.8	434.6	10.62	1441.9	0.69	
H2 BST TRB DIFF	1720.7	434.6	10.62 10.62	1441.9	0.68	
02 BST TRB IN	1703.5	434.7	10.62	1439.3	0.68	
OZ BST TRB OUT	1692.0	434.0	10.62	1439.3	0.68	
02 BST TRB DIFF	1690.5	434.0 442.8	0.0203	1454.7	0.0079	
H2 TANK PRESS	18.6	438.2	11.16	1454.7	0.67	
GOX HEAT EXCH IN	1682.1	438.2	11.16	1453.3	0.67	
GOX HEAT EXCH OUT		437.8	11.16	1453.3	0.67	
FSOV INLET	1673.7 1631.8	438.0	11.16	1453.3	0.65	
FSOV EXIT	1615.5	438.0	11.16	1453.3	0.64	
CHAMBER INJ	1502.9	430.0				
CHAMBER	1502.7					
	■ OXY		CONDITION	S •	ne	
MOITATE	PRESS	TEMP	FLOH	ENTHALPY	DENSITY	
B.P. INLET	16.0	162.7	67.1	61.1	71.17 71.20	
B.P. EXIT	135.6	163.2	67.1	61.5	71.20	
PUMP INLET	135.4	163.2	67.1	61.5	71.71	
PUMP EXIT	2433.9	173.5	67.1	69.3	0.12	
02 TANK PRESS	16.0	400.0	0.113	204.7 69.3	71.67	
OCV INLET	2409.6	173.6	67.0	69.3	70.55	
OCV EXIT	1686.7	176.4	67.0	69.3	70.50	
CHAMBER INJ	1653.1	176.5	67.0	67.3		
CHAMBER	1502.9					
		. VALVE D	ATA P			
VALVE	DELTA P	AREA	FLON	* BYPASS		
TBV	2232.	0.02	0.54	5.00		
FSOV	42.	3.09	11.16			
	723.	0.44	66.97			
DCV		• • • •				
		INJECTOR				
INJECTOR	DELTA P		FLON	VELOCITY		
FUEL	113.	2.13	11.16	1181.21		
LOX	167.	0.97	66.97	140.53		

TABLE 12. — FULL-EXPANDER ENGINE — 37,500 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

* TURBOMACHINERY PERFORMANCE DATA * ------# H2 BOOST TURBINE # *********** EFFICIENCY (T/T) 0.848 EFFICIENCY (T/S) 0.479 EFF ICIPACY 9.766 HORSEPOHER 71. SPEED (RPM) 33637. HEAN DIA (IN) 1.78 EFF AREA (IN2) 3.85 SPEED (RPH) S SPEED 33637. 3051. HEAD (FT) DIA. (IH) TIP SPEED 2481. U/C (ACTUAL) MAX TIP SPEED 370. 438. STAGES VOL. FLON HEAD COEF GAMMA 1.42 0.450 PRESS RATIO (T/T) 1.01 FLOH COOF PRESS RATIO (T/S) 0.201 1.02 71. EXIT MACH NUMBER SPECIFIC SPEED 150.00 SPECIFIC DIAMETER 0.54 ********** ********* . H2 TURBINE . . H2 PUMP . ********* STAGE DNE STAGE THO STAGE THREE EFFICIENCY (T/T) 0.865 EFFICIENCY (T/S) 0.827 SPEED (RPH) 107)43. HORSEPOMER 1764. MEAN DIA. (1M) 2.61 EFF AREA (1M2) 0.488 U/C (ACTUAL) 0.488 **EFFICIENCY** 0.730 0.737 HORSEPONER 1256. SPEED (RPM) 107143. 107143. 107143. \$\$ \$PEED 11947. S SPEED 1142. 1132. 1124 HEAD (FT) DIA. (IN) TIP SPEED 45690. 3.64 45553. 45391. 3.64 1702. 3.64 MAX TIP SPEED STAGES 1347. 1702. 1702. VOL. FLOH 1110. 1005. 1.42 PRESS RATIO (T/T) PRESS RATIO (T/S) HEAD COEF 0.507 0.504 1.92 FLON COEF 0.119 1.78 DIANETER RATIO EXIT MACH HUMBER SHAFT DIAMETER 90 ---0.20 SPECIFIC DIMETER 1.21 P 02 BOOST TURBINE H # 02 BOOST PUMP . EFFICIENCY (T/T) EFFICIENCY (T/S) 0.887 0.764 0.754 HORSEPONER SPEED SPEED (RPH) HEAN DIA (IN) EFF AREA (IN2) SPEED (RPH) S SPEED HEAD (FT) DIA, (IN) 9024. 9024 5.03 5.48 242. U/C CACTUA MAX TIP SPEED (ACTUAL) 0.553 DIA, (IN) TIP SPEED 3.34 231. 132. VOL. FLON HEAD COEF STAGES GAPPIA 8.450 PRESS RATIO (T/T) PRESS RATIO (T/S) 1.01 FLOH COFF 8.200 1.01 39. EXIT MACH MINNER SPECIFIC SPEED 93.06 SPECIFIC DIAMETER # 02 TURBINE # - 02 PUMP + EFFICIENCY (T/T) 8.877 **EFFICIENCY** 0.760 EFFICIENCY (T/S) 0.826 HORSEPOMER SPEED (RPH) 52014. SPEED (RPM) 52814. HORSEPONER SS SPEED S SPEED HEAD (FT) 740. 20904. MEAN DIA (IN) EFF AREA (IN2) 2.61 1904 0.68 4613. (ACTUAL) U/C DIA. (IN) 2.58 MAX TIP SPEED 667. TIP SPEED 587. STAGES VOL. FLON HEAD COEF 420. GAMMA 1.62 0.431 PRESS RATIO (T/T) 1.12 FLON COEF 8.158 PRESS RATIO (T/S) 1.13 DIAMETER RATIO 0.484 EXIT MACH NUMBER BEARING DN 1.46E+06 SHAFT DIAMETER 28.00 0.09 SPECIFIC SPEED SPECIFIC DIAMETER

TABLE 13. — FULL-EXPANDER ENGINE — 50,000 LBF THRUST (COPPER TUBE CHAMBER)

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1402.6
VAC ENGINE THRUST	50000.
TOTAL ENGINE FLOW RATE	104.18
DEL. VAC. ISP	480.0
THROAT AREA	17.41
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	148.90
ENGINE MIXTURE RATIO	6.00
FTA C*	0.993
CHAMBER COOLANT DP	355.
CHAMBER COOLANT DT	383.
NOZZLE/CHAMBER Q	21899.

		YSTEM CON	FLON	ENTHALPY	DENSITY
STATION	PRESS	TEMP	14.91	-107.5	4.37
B.P. INLET	18.6	37.4 38.5	14.91	-103.0	4.39
B.P. EXIT	100.2	38.5	14.91	-103.0	4.39
PUMP INLET	100.2	51.6	14.91	-37.9	4.53
IST STAGE EXIT	1308.4	64.4	14.91	27.5	4.65
2ND STAGE EXIT	2547.4	76.7	14.91	93.1	4.73
PUMP EXIT	3813.5	77.1	14.91	93.1	4.71
COOLANT INLET	3775.4 3420.6	459.9	14.91	1561.6	1.20
COOLANT EXIT	3386.4	460.0	0.75	1561.6	1.19
TBV INLET	1570.3	467.3	0.75	1561.6	0.59
TBV EXIT	3386.4	460.0	14.17	1561.6	1.19
OZ TRB INLET	3016.7	449.7	14.17	1516.4	1.10
OZ TRB EXIT	3016.7	449.7	14.17	1516.4	1.10
H2 TRB INLET	1706.6	400.3	14.17	1309.9	0.74
H2 TRB EXIT H2 TRB DIFFUSER	1659.7	400.4	14.17	1309.9	0.72
H2 BST TRB IN	1643.1	400.4	14.17	1309.9	0.72
H2 BST TRB OUT	1620.3	399.3	14.17	1305.2	0.71
H2 BST TRB DIFF	1607.4	399.3	14.17	1305.2	0.70
02 BST TRB IN	1591.3	399.4	14.17	1305.2	0.70
OZ BST TRB OUT	1579.8	398.7	14.17	1302.6	0.69
OZ BST TRB DIFF	1578.2	398.7	14.17	1302.6	0.69
H2 TANK PRESS	18.6	405.3	0.0296	1315.5	0.0087
GOX HEAT EXCH IN	1570.3	402.1	14.88	1315.5	0.68
GOX HEAT EXCH OUT	1562.5	401.8	14.88	1314.2	0.68
FSOV INLET	1562.5	401.8	14.88	1314.2	0.68
FSOV EXIT	1523.4	401.9	14.88	1314.2	0.66
CHAMBER INJ	1508.2	401.9	14.88	1314.2	0.66
CHAMBER	1402.6				
	- 044	THE CVETEM	CONDITIONS	s •	
	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
STATION	16.0	162.7	89.4	61.1	71.17
B.P. INLET	135.6	163.2	89.4	61.5	71.20
B.P. EXIT	135.6	163.2	89.4	61.5	71.20
PUMP INLET	2271.6	172.6	89.4	68.6	71.71
PUMP EXIT 02 TANK PRESS	16.0	400.0	0.151	204.7	0.12
OCV INLET	2248.8	172.7	89.3	68.6	71.67
DCV EXIT	1574.2	175.3	89.3	68.6	70.62
CHAMBER INJ	1558.4	175.3	89.3	68.6	70.60
CHAMBER	1402.6	-			
			•• -		
		• VALVE DA	NIA -		
VALVE	DELTA P	AREA	FLON	% BYPASS	
TBV	1816.	0.03	0.75	5.00	
FSOV	39.	4.22	14.88		
ocv	675.	0.61	89.29		
		INJECTOR	DATA =		
		ARE A	FLON	VELOCITY	
INJECTOR	DELTA P	2.68	14.88	1131.21	
FUEL	106.	1.27	89.29	135.69	
LOX	156.	1.27	07.47		

TABLE 13. — FULL-EXPANDER ENGINE — 50,000 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

********	化二甲基甲基甲基甲基甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	
# TURBOHACH	INERY PERFORMANCE DATA *	

#####################################	*********	
	# H2 BOOST F	
EFFICIENCY (T/T) 0.861	EFFICIENCY	
EFFICIENCY (T/S) 0.489	HORSEPOHER	0.766 95.
SPEED (RPM) 29123.	SPEED (RPM)	29123.
MEAN DIA (IN) 2.04 EFF AREA (IN2) 5.09	S SPEED	3051
U/C (ACTUAL) 0.533	HEAD (FT) DIA. (IN)	2682.
MAX TIP SPEED 367.	DIA. (IN)	
STAGES 1	TIP SPEED VOL. FLOW	438.
GAMMA 1.41	HEAD COEF	1525. 0.450
PRESS RATIO (T/T) 1.01	FLOH COEF	0.201
PRESS RATIO (T/S) 1.02 HORSEPOWER **		
HORSEPOHER 95. EXIT MACH NUMBER 0.11		
SPECIFIC SPEED 150.00		
SPECIFIC DIAMETER 0.54		
" H2 TURBINE .	******	
and the property of the proper	# H2 PUMP	
	BRESSES STATE OME	STAGE THO STAGE THREE
	2. 大	STAGE THO STAGE THREE
EFFICIENCY (T/T) 0.889	EFFICIENCY 0.764	0.763 0.763
EFFICIENCY (T/S) 0.838 SPEED (RPM) 100000.	HORSEPOHER 1375. SPEED (RPM) 100000.	1380. 1384.
HORSEPOHER 4139.	SPEED (RPM) 100000. SS SPEED 12880.	100000. 100000.
MEAN DIA. (IN) 2.83 EFF AREA (IN2) 0.71	33 3FEED 12880.	
EFF AREA (IN2) 0.71	5 SPEED 1391. HEAD (FT) 38744.	13/2. 1359. 38828 70075
U/C (ACTUAL) 0.544	DIA. (IN) 3.68	3.68 3.49
U/C (ACTUAL) 0.544 MAX TIP SPEED 1383. STAGES 2	TIP SPEED 1609.	1372. 1359. 38828. 38875. 3.68 3.69 1609. 1609.
GAMMA 1.41	VOL. FLOW 1476.	4713.
PRESS RATIO (T/T) 1.77	HEAD COEF 0.481 FLOH COEF 0.133	0.483 0.483
PRESS RATIO (T/S) 1.83	DIAMETER RATIO 0.472	
EXIT MACH NUMBER 0.21	BEARING DN 3.00F+06	
SPECIFIC SPEED 73.38 SPECIFIC DIAMETER 1.12	SHAFT DIAHETER 30.00	
a con to bracier 1.12		
医	1 医复数皮肤 电电阻 医原体虫	
# 02 BOOST TURBINE #	# 02 BOOST PUR	
EFFICIENCY (T/T) 0.896	网络安全的 国际保持会会	
EFFICIENCY (T/S) 0.762	EFFICIENCY HORSEPOHER	
SPEED (RPM) 7817	SPEED (RPM)	51. 7817.
MEAN DIA (IN) 5.81 EFF AREA (IN2) 7.23	S SPEED	3026.
EFF AREA (IN2) 7.23	HEAD (FT) D1A. (IN)	242.
U/C (ACTUAL) 0.553 MAX TIP SPEED 230.	DIA. (IN)	3.85
STAGES 1	TIP SPEED VOL. FLOW	132.
GAMMA 1.41	HEAD COEF	564. 0.450
PRESS RATIO (T/T) 1.01	FLOH COEF	0.200
PRESS RATIO (T/S) 1.01 HORSEPOMER 51.		
HORSEPOMER 51. EXIT MACH NUMBER 0.04		
EXIT MACH NUMBER 0.04 SPECIFIC SPEED 93.04		
SPECIFIC DIAMETER 0.92		

# OZ TURBINE #	**************************************	
*********	я О2 РИМР и имининания	
EFFICIENCY (T/T) 0.879		0.769
EFFICIENCY (T/S) 0.822 SPEED (RPH) 63561.	EFFICIENCY HORSEPOHER	907.
HORSEPOHER 907.	SPEED (RPM)	43561.
MEAN DIA (IN) 2.83	SS SPEED S SPEED	20215.
EFF AREA (IN2) 1.00		1945. 4287.
U/C (ACTUAL) 0.506	HEAD (FT) DIA. (IN)	2.96
MAX TIP SPEED 617. STAGES 2	TIP SPEED	564.
GAMMA 1.41	VOL. FLON	560.
PRESS RATIO (T/T) 1.12		0.434
PRESS RATIO (T/S) 1.13	FLOW COEF DIAMETER RATIO	0.160
FM		0.686
EXIT MACH NUMBER 0.10	BEARING DN 1.	31E+06
EXIT MACH NUMBER 0.10 SPECIFIC SPEED 77.88 SPECIFIC DIAMETER 0.99	BEARING DN 1.: SHAFT DIAMETER	31E+06 30.00

TABLE 14. — SPLIT-EXPANDER ENGINE — 7500 LBF THRUST (COPPER TUBE CHAMBER)

CHAMBER PRESSURE	1329.9
VAC ENGINE THRUST	7500.
TOTAL ENGINE FLOH RATE	15.63
	479.9
DEL. VAC. ISP	2.75
THROAT AREA	1000.0
NOZZLE AREA RATIO	59.21
NOZZLE EXIT DIAMETER	6.00
ENGINE MIXTURE RATIO	• • • • •
ETA C#	0.993
CHAMBER COOLANT DP	1300.
CHAMBER COOLANT DT	1071.
MOZZI EZCHAMBER Q	4397.

STATION PRESS TEMP FLOW ENTHALPY DENSITY B.P. IMLET 18.6 37.4 2.23 -107.5 4.37 B.P. EXIT 100.3 38.5 2.23 -103.0 4.39 PUMP IMLET 100.3 38.5 2.23 -103.0 4.39 PUMP IMLET 100.3 38.5 2.23 113.7 4.30 IST STAGE EXIT 1787.3 66.4 2.23 113.7 4.30 JBY IMLET 1760.5 66.6 1.12 113.9 4.28 JBY IMLET 160.5 66.6 1.12 13.9 4.09 PUMP EXIT 4981.0 137.3 1.12 298.4 3.98 PUMP EXIT 4981.0 137.3 1.12 298.4 3.98 COOLANT IMLET 6931.2 137.7 1.12 298.4 3.98 COOLANT IMLET 5631.6 1208.7 1.12 4234.7 0.53 TBY IMLET 3595.2 1209.0 0.06 4234.7 0.52 TBY EXIT 567.0 1223.8 0.06 4234.7 0.52 TBY EXIT 1567.0 1263.8 0.06 4234.7 0.52 D2 TRB IMLET 3240.7 1184.9 1.06 4140.6 0.48 THE TRB EXIT 1601.4 1040.3 1.06 3595.0 0.29 THE TRB DIFF 1641.7 1040.4 1.06 3595.0 0.29 THE TRB DIFF 1641.7 1040.4 1.06 3595.0 0.28 THE BY TRB DIFF 1641.7 1040.4 1.06 3595.0 0.28 THE BY TRB DIFF 1661.4 1038.0 1.06 3585.5 0.28 THE BY TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 THE BY TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 THE BY TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 THE ST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 THE TANK PRESS 18.6 1057.3 0.0017 3613.1 0.0033 THINER HOT IN 1559.1 1045.4 1.12 3610.3 0.27 THANBER HOT IN 1559.1 1045.4 1.12 3610.3 0.27 THANBER HOT IN 1481.2 535.9 2.23 1810.7 0.49 THANBER 1NJ 1429.7 536.2 2.23 1810.7 0.49		. 6151	CVCTEM CON	DITIONS *		
STATION B.P. IMLET B.P. IMLET B.P. EXIT 100.3 38.5 2.23 -103.0 4.39 B.P. EXIT 100.3 38.5 2.23 -103.0 4.39 B.P. EXIT 100.3 38.5 2.23 -103.0 4.39 IST STAGE EXIT 1787.3 66.4 2.23 13.7 4.30 IST STAGE EXIT 1787.3 66.6 1.12 113.9 4.09 JBV INLET JBV INLET JBV EXIT 1496.4 68.6 1.12 113.9 4.09 PUMP EXIT COOLANT 1MLET 4981.0 1377.3 1.12 298.4 3.96 COOLANT EXIT 5631.6 1208.7 1.12 298.4 3.96 COOLANT EXIT 1567.0 1223.8 0.06 4234.7 0.53 TBV EXIT 1567.0 1223.8 0.06 4234.7 0.52 02 TRB EXIT 3240.7 1184.9 1.06 4140.6 0.48 M2 TRB INLET 3240.7 1184.9 1.06 4140.6 0.48 M2 TRB INLET 1557.5 1040.3 1.06 3595.0 0.29 M2 TRB EXIT 1661.7 1040.4 1.06 3595.0 0.29 M2 BST TRB IN 1657.5 1040.3 1.06 3585.5 0.28 M2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 M2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 M2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 M2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 M2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 M2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 M2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 M3 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 M3 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 0.28 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 M1KER COLD IN 1559.1 1045.4 1.12 3610.3 0.27 MIKER COLD IN 1481.2 535.9 2.23 1810.7 0.49 FSOV EXIT 1442.7 536.2 2.23 1810.7 0.48 FSOV EXIT 1442.7 536.2 2.23 1810.7 0.47					ENTHALPY	DENSITY
B.P. EXIT 100.3 38.5 2.23 -103.0 4.39 PUMP INLET 100.3 38.5 2.23 -103.0 4.39 PUMP INLET 100.3 38.5 2.23 13.7 4.30 1ST STAGE EXIT 1787.3 66.4 2.23 13.7 4.30 JBV INLET 1760.5 66.6 1.12 13.9 4.28 JBV INLET 1696.4 68.6 1.12 13.9 4.28 PUMP EXIT 1696.4 68.6 1.12 164.0 4.05 PUMP EXIT 4981.0 137.3 1.12 298.4 3.98 PUMP EXIT 4981.0 137.7 1.12 298.4 3.98 PUMP EXIT 4531.6 1208.7 1.12 4234.7 0.52 TBV INLET 5595.2 1209.0 0.06 4234.7 0.52 TBV INLET 3595.2 1209.0 0.06 4234.7 0.52 TBV INLET 3595.2 1209.0 1.06 4234.7 0.52 TBV INLET 3595.2 1209.0 1.06 4234.7 0.52 02 TRB INLET 3595.2 1209.0 1.06 4234.7 0.52 02 TRB INLET 3595.2 1209.0 1.06 4234.7 0.52 02 TRB INLET 3595.1 1040.3 1.06 4140.6 0.48 H2 TRB INLET 3595.2 1009.0 1.06 4234.7 0.52 H2 TRB INLET 3540.7 1184.9 1.06 4140.6 0.48 H2 TRB INLET 3540.7 1184.9 1.06 4140.6 0.48 H2 TRB INLET 1641.7 1040.3 1.06 3595.0 0.28 H2 BST TRB IN 1625.3 1040.3 1.06 3595.0 0.28 H2 BST TRB IN 1625.3 1040.4 1.06 3595.0 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3580.4 0.27 H2 TANK PRESS 18.6 1036.7 1.06 3580.4 0.27 H2 TANK PRESS 18.6 1057.3 0.0017 3613.1 0.0033 H2 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 H2 TANK PRESS 18.6 1057.3 0.0017 3613.1 0.27 H2 TANK PRESS 18.6 1055.3 0.223 1810.7 0.49 H3KER OUT 1681.2 535.9 2.23 1810.7 0.49 FSOV INLET 1481.2 535.9 2.23 1810.7 0.49 FSOV EXIT 1442.1 536.1 2.23 1810.7 0.49					-107.5	4.37
B.P. EXIT 100.3 38.5 2.23 -103.0 4.39 PUMP INLET 100.3 38.5 2.23 13.7 4.30 1ST STAGE EXIT 1787.3 66.4 2.23 13.7 4.28 JBV INLET 1760.5 66.6 1.12 13.9 4.09 JBV INLET 1760.5 66.6 1.12 13.9 4.09 JBV EXIT 1696.4 68.6 1.12 13.9 4.09 PUMP EXIT 4981.0 137.3 1.12 298.4 3.98 PUMP EXIT 4981.0 137.3 1.12 298.4 3.96 COOLANT INLET 4931.2 137.7 1.12 298.4 3.96 COOLANT EXIT 3631.6 1208.7 1.12 4234.7 0.53 TBV EXIT 1567.0 1223.8 0.06 4234.7 0.52 TBV EXIT 1567.0 1223.8 0.06 4234.7 0.52 TBV EXIT 1567.0 1223.8 0.06 4234.7 0.52 TBV EXIT 3240.7 1184.9 1.06 4140.6 0.48 PL TRB INLET 3240.7 1184.9 1.06 4140.6 0.48 PL TRB EXIT 3240.7 1184.9 1.06 4140.6 0.48 PL TRB EXIT 1657.5 1040.3 1.06 3595.0 0.29 PL TRB EXIT 1657.5 1040.3 1.06 3595.0 0.29 PL TRB DIFFUSER 1641.7 1040.4 1.06 3595.0 0.28 PL TRB DIFFUSER 1641.7 1040.4 1.06 3595.0 0.28 PL TRB DIFFUSER 1601.4 1038.0 1.06 3585.5 0.28 PL TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 PL TRB DIFFUSER 1601.4 1038.0 1.06 3585.5 0.28 PL TRB DIFFUSER 1667.5 1036.7 1.06 3580.4 0.27 OL BST TRB DUT 1575.6 1036.7 1.					-103.0	4.39
ST STAGE EXIT		-			-103.0	4.39
JBY INLET 1760.5 66.6 1.12 13.9 4.28 JBY INLET 1696.4 68.6 1.12 13.9 4.09 JBY EXIT 1696.4 68.6 1.12 164.0 4.05 JBY EXIT 4981.0 137.3 1.12 298.4 3.98 PUMP EXIT 4981.0 137.7 1.12 298.4 3.98 COOLANT INLET 6931.2 137.7 1.12 298.4 3.98 COOLANT EXIT 3631.6 1208.7 1.12 4234.7 0.53 TBY INLET 3595.2 1209.0 0.06 4234.7 0.52 TBY EXIT 1567.0 1223.8 0.06 4234.7 0.52 TBY EXIT 1567.0 1223.8 0.06 4234.7 0.52 TBY EXIT 1567.0 1223.8 0.06 4234.7 0.52 TBY EXIT 3240.7 1184.9 1.06 4140.6 0.48 H2 TBR INLET 3240.7 1184.9 1.06 4140.6 0.48 H2 TBR EXIT 1657.5 1040.3 1.06 3595.0 0.29 H2 TBR EXIT 1641.7 1040.4 1.06 3595.0 0.28 H2 BST TRB DUT 1606.3 1038.0 1.06 3595.0 0.28 H2 BST TRB DUT 1606.3 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.1 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.1 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.1 1.06 3580.4 0.27 H2 TANK PRESS 18.6 1056.7 1.06 3580.4 0.27 H2 TANK PRESS 18.6 1057.3 0.0017 3613.1 0.0033 GOX HEAT EXCH DUT 1559.1 1045.4 1.12 3610.3 0.27 HIXER COLD IN 1559.1 1045.4 1.12 3610.3 0.27 HIXER COLD IN 1696.4 68.6 1.12 13.9 4.09 HIXER OUT 1612.2 535.9 2.23 1810.7 0.49 FSOV INLET 1481.2 535.9 2.23 1810.7 0.49 FSOV EXIT 1442.1 536.1 2.23 1810.7 0.49 FSOV EXIT 1442.7 536.2 2.23 1810.7 0.49					13.7	4.30
JBY INLE! 1696.4 68.6 1.12 13.9 4.09 JBY EXIT 1696.4 68.6 1.12 164.0 4.05 2ND STAGE EXIT 3673.0 104.6 1.12 298.4 3.98 PUMP EXIT 4981.0 137.3 1.12 298.4 3.98 COOLANT INLET 4931.2 137.7 1.12 298.4 3.96 COOLANT EXIT 3631.6 1208.7 1.12 4234.7 0.53 TBY INLET 3595.2 1209.0 0.06 4234.7 0.52 TBY EXIT 1567.0 1223.8 0.06 4234.7 0.23 TBY EXIT 1567.0 1223.8 0.06 4234.7 0.52 CO TRB INLET 3595.2 1209.0 1.06 4234.7 0.52 TBY EXIT 1240.7 1184.9 1.06 4140.6 0.48 HZ TRB INLET 3240.7 1184.9 1.06 4140.6 0.48 HZ TRB EXIT 1657.5 1040.3 1.06 3595.0 0.28 HZ TRB DIFFUSCR 1641.7 1040.4 1.06 3595.0 0.28 HZ BST TRB DIFF 1601.4 1038.0 1.06 3595.0 0.28 HZ BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 HZ BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 HZ BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 OZ BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 OZ BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 GOX HEAT EXCH IN 1559.1 1045.4 1.12 3610.3 0.27 HIMER HOT IN 1559.1 1045.4 1.12 3610.3 0.27 HIMER HOT IN 1559.1 1045.4 1.12 3610.3 0.27 HIMER COLD IN 1696.4 68.6 1.12 13.9 4.09 HIXER OUT 1681.2 535.9 2.23 1810.7 0.49 FSOV INLET 1481.2 535.9 2.23 1810.7 0.48 FSOV EXIT 1422.7 536.2 2.23 1810.7 0.48					13.9	4.28
SIND STAGE EXIT 3473.0 104.6 1.12 164.0 4.05 PUMP EXIT 4981.0 137.3 1.12 298.4 3.98 PUMP EXIT 4981.0 137.3 1.12 298.4 3.96 COOLANT INLET 4931.2 137.7 1.12 298.4 3.96 COOLANT EXIT 3631.6 1208.7 1.12 4234.7 0.53 TBV INLET 3595.2 1209.0 0.06 4234.7 0.52 TBV EXIT 1567.0 1223.8 0.06 4234.7 0.52 02 TRB INLET 3595.2 1209.0 1.06 4234.7 0.52 02 TRB EXIT 3240.7 1184.9 1.06 4140.6 0.48 HZ TRB INLET 3240.7 1184.9 1.06 4140.6 0.48 HZ TRB EXIT 1657.5 1040.3 1.06 3595.0 0.29 HZ TRB EXIT 1657.5 1040.3 1.06 3595.0 0.29 HZ TRB DIFFUSER 1641.7 1040.4 1.06 3595.0 0.28 HZ BST TRB IN 1625.3 1040.4 1.06 3595.0 0.28 HZ BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 HZ BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 HZ BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 UZ BST TRB IN 1585.4 1038.1 1.06 3585.5 0.28 UZ BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1056.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1056.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1056.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1056.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1056.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1056.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1056.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1056.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1056.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1056.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1056.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1056.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1056.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1056.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1056.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1056.7 1.06 358					13.9	4.09
2ND STABLE EXIT 4981.0 137.3 1.12 298.4 3.98 PUMP EXIT 4981.0 137.3 1.12 298.4 3.96 COOLANT INLET 6931.2 137.7 1.12 298.4 3.96 COOLANT INLET 6931.2 137.7 1.12 4234.7 0.53 TBV INLET 3695.2 1209.0 0.06 4234.7 0.52 TBV EXIT 1567.0 1223.8 0.06 4234.7 0.52 TBV EXIT 1567.0 1263.8 0.06 4234.7 0.52 TBV EXIT 1567.0 1184.9 1.06 4140.6 0.48 TBV EXIT 1567.5 1040.3 1.06 3595.0 0.29 TBV EXIT 1657.5 1040.3 1.06 3595.0 0.28 TBV EXIT 1657.5 1040.4 1.06 3595.0 0.28 TBV EXIT 1661.7 1040.4 1.06 3595.0 0.28 TBV EXIT 1606.3 1038.0 1.06 3595.0 0.28 TBV EXIT 1601.4 1038.0 1.06 3595.5 0.28 TBV EXIT 1601.4 1038.0 1.06 3585.5 0.28 TBV EXIT 1601.4 1038.1 1.06 3580.4 0.27 TBV EXIT 1601.4 1038.1 1.06 3580.4 0.27 TBV EXIT 1601.4 1036.7 1.06 3580.4 0.27 TBV EXIT 1604.4 1.12 3610.3 0.27 TBV EXIT 1605.4 1.12 3610.7 0.49 TBV EXIT 1604.4 1.536.1 2.23 1810.7 0.49 TBV EXIT 1604.1 1559.1 1045.4 1.12 3610.3 0.27 TBV EXIT 1604.1 1559.1 1045.4 1.12 3610.3 0.27 TBV EXIT 1604.4 1536.1 2.23 1810.7 0.49 TBV EXIT 1604.1 1559.1 1045.4 1.12 3610.3 0.27 TBV EXIT 1604.4 1536.1 2.23 1810.7 0.49 TBV EXIT 1604.4 1536.1 2.23 1810.7 0.49 TBV EXIT 1604.4 1536.1 2.23 1810.7 0.49 TBV EXIT 1604.4 1536.2 2.23 1810.7					164.0	4.05
COOLANT IMLET 4931.2 137.7 1.12 298.4 3.96 COOLANT IMLET 4931.2 127.7 1.12 298.4 3.96 COOLANT EXIT 3631.6 1208.7 1.12 4234.7 0.53 TBV IMLET 3595.2 1209.0 0.06 4234.7 0.23 TBV EXIT 1567.0 1223.8 0.06 4234.7 0.23 OZ TRB INLET 3595.2 1209.0 1.06 4234.7 0.52 CZ TRB EXIT 3240.7 1184.9 1.06 4140.6 0.48 HZ TRB INLET 3240.7 1184.9 1.06 4140.6 0.48 HZ TRB EXIT 1657.5 1040.3 1.06 3595.0 0.28 HZ TRB EXIT 1657.5 1040.3 1.06 3595.0 0.28 HZ TRB DIFFUSEX 1641.7 1040.4 1.06 3595.0 0.28 HZ BST TRB DIF 1601.4 1038.0 1.06 3595.0 0.28 HZ BST TRB DUT 1606.3 1038.0 1.06 3595.5 0.28 HZ BST TRB DUT 1575.6 1038.0 1.06 3585.5 0.28 HZ BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 UZ BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 UZ BST TRB DUT 1575.6 1036.7 1.06 3580.4 0.27 UZ BST TRB DUT 1575.6 1036.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 UZ BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 UZ BST TRB DIFF 159.1 1045.4 1.12 3610.3 0.27 HZ TANK PRESS 18.6 1057.3 0.0017 3613.1 0.27 GOX HEAT EXCH DN 1559.1 1045.4 1.12 3610.3 0.27 HIXER OUT 1 1559.1 1045.4 1.12 3610.3 0.27 HIXER COLD IN 1696.4 68.6 1.12 13.9 4.09 HIXER OUT 1481.2 535.9 2.23 1810.7 0.49 FSOV EXIT 1442.7 536.1 2.23 1810.7 0.49 FSOV EXIT 1442.7 536.2 2.23 1810.7 0.48					298.4	3.98
COOLANT EXIT 3631.6 1208.7 1.12 4234.7 0.53 COOLANT EXIT 3631.6 1208.7 1.12 4234.7 0.53 TBV INLET 3595.2 1209.0 0.06 4234.7 0.52 TBV EXIT 1567.0 1223.8 0.06 4234.7 0.52 CTB INLET 3595.2 1209.0 1.06 4234.7 0.52 CTB INLET 3595.2 1209.0 1.06 4234.7 0.52 CTB EXIT 3240.7 1184.9 1.06 4140.6 0.48 CTB INLET 3240.7 1184.9 1.06 4140.6 0.48 CTB INLET 3240.7 1184.9 1.06 4140.6 0.48 CTB INLET 3240.7 1184.9 1.06 3595.0 0.29 CTB EXIT 1657.5 1040.3 1.06 3595.0 0.29 CTB EXIT 1657.5 1040.3 1.06 3595.0 0.29 CTB EXIT 1657.5 1040.4 1.06 3595.0 0.28 CTB INLET 1665.3 1040.4 1.06 3595.0 0.28 CTB INLET 1665.3 1040.4 1.06 3595.0 0.28 CTB INLET 1601.4 1038.0 1.06 3585.5 0.28 CTB INLET 1601.4 1038.0 1.06 3580.4 0.27 CTB INLET 1601.4 1036.7 1.06 3580.4					298.4	3.96
TBN INLET 3595.2 1209.0 0.06 4234.7 0.52 TBN EXIT 1567.0 1223.8 0.06 4234.7 0.52 TBN EXIT 1567.0 1223.8 0.06 4234.7 0.52 02 TRB INLET 3595.2 1209.0 1.06 4234.7 0.52 02 TRB EXIT 3240.7 1184.9 1.06 4140.6 0.48 H2 TRB INLET 3240.7 1184.9 1.06 4140.6 0.48 H2 TRB EXIT 1657.5 1040.3 1.06 3595.0 0.28 H2 TRB EXIT 1657.5 1040.3 1.06 3595.0 0.28 H2 TRB DIFFUSER 1641.7 1040.4 1.06 3595.0 0.28 H2 BST TRB IN 1625.3 1040.4 1.06 3595.0 0.28 H2 BST TRB OUT 1606.3 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 U2 BST TRB IN 1585.4 1038.1 1.06 3585.5 0.28 U2 BST TRB DIFF 1671.4 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1575.6 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1575.6 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1575.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1575.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1575.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1575.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1576.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1576.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1576.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1576.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1576.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1576.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1576.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1576.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1576.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1576.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1576.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1576.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1576.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1576.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1576.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1576.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1576.8 1036.7 1.06 3580				-	4234.7	0.53
TBY INLET 184 TBLET 185 TBLET 1867.0 1223.8 0.06 4234.7 0.52 02 TRB INLET 3595.2 1209.0 1.06 4234.7 0.52 02 TRB EXIT 1240.7 1184.9 1.06 4140.6 0.48 12 TRB INLET 1240.7 1184.9 1.06 4140.6 0.48 12 TRB INLET 1657.5 1040.3 1.06 3595.0 0.28 12 TRB DIFFUSER 1641.7 1040.4 1.06 3595.0 0.28 12 TRB DIFFUSER 1641.7 1040.4 1.06 3595.0 0.28 12 BST TRB DIFF 1601.4 1038.0 1.06 3595.5 0.28 12 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 12 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 12 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 12 BST TRB DIFF 1671.8 1036.7 1.06 3585.5 0.28 12 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 12 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 12 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 12 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 12 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 12 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 12 BST TRB DIFF 1559.1 1045.4 1.12 3610.3 0.27 13 MIXER HOT IN 1559.1 1045.4 1.12 3610.3 0.27 14 MIXER HOT IN 1559.1 1045.4 1.12 3610.3 0.27 14 MIXER OUT 1481.2 535.9 2.23 1810.7 0.49 15 MARER OUT 1481.2 535.9 2.23 1810.7 0.49 15 MARER INJ 1429.7 536.2 2.23 1810.7 0.48 15 CMARBER INJ 1429.7 536.2 2.23 1810.7 0.48						0.52
TBY EXIT 1567.0 1223.6 1.06 4234.7 0.52 02 TRB INLET 3595.2 1209.0 1.06 4140.6 0.48 120 120 120 120 120 120 120 120 120 120						0.23
02 TRB INLET 3579.2 1293.0 1.06 4140.6 0.48 027 188 EXIT 3240.7 1184.9 1.06 4140.6 0.48 142 142 142 142 142 142 142 142 142 142						0.52
02 TRB EXIT 3240.7 1184.9 1.06 4140.6 0.48 H2 TRB INLET 3240.7 1184.9 1.06 3595.0 0.29 H2 TRB EXIT 1657.5 1040.3 1.06 3595.0 0.28 H2 TRB DIFFUSER 1641.7 1040.4 1.06 3595.0 0.28 H2 BST TRB IN 1625.3 1040.4 1.06 3595.0 0.28 H2 BST TRB DUT 1606.3 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1036.7 1.06 3580.4 0.27 H2 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 H2 TANK PRESS 18.6 1057.3 0.0017 3613.1 0.033 H2 TANK PRESS 18.6 1057.3 0.0017 3613.1 0.27 H2 TANK PRESS 18.6 1057.3 0.0017 3613.1 0.27 H3 TANK PRESS 18.6 1057.3 0.0017 3613.1 0.27 HX TANK PRESS 18.6 1055.3 0.0017 3613.1 0.27 HX TANK PRESS 18.6 1055.3 0.0017 3613.1 0.27 HX TANK PRESS 18.6 1057.3 0.0017 3613.1 0.27 HX TANK PRESS 18.6 1057.3 0.0017 3613.1 0.27 HX TANK PRESS 18.6 1055.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27 HX TANK PRESS 18.6 1059.1 1045.4 1.12 3610.3 0.27						0.48
H2 TRB INLET 1240.7 1104.5 1.06 3595.0 0.29 H2 TRB EXIT 1657.5 1040.3 1.06 3595.0 0.29 H2 TRB DIFFUSER 1641.7 1040.4 1.06 3595.0 0.28 H2 BST TRB IN 1652.3 1040.4 1.06 3595.0 0.28 H2 BST TRB IN 1606.3 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB IN 1585.4 1038.1 1.06 3585.5 0.28 0.28 ST TRB IN 1585.4 1038.1 1.06 3585.5 0.28 0.28 ST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 0.28 ST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 0.28 ST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 0.28 ST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 0.28 ST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 0.28 ST TRB DIFF 1574.8 1056.7 1.06 3580.4 0.27 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29						0.48
H2 TRB EXIT 1657.5 1040.5 1.06 3595.0 0.28 H2 BST TRB IN 1625.3 1040.4 1.06 3595.0 0.28 H2 BST TRB OUT 1606.3 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.1 1.06 3585.5 0.28 U2 BST TRB DIFF 1601.4 1038.1 1.06 3585.5 0.28 U2 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 U2 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 U2 TRB DIFF 1564.4 1.12 3610.3 0.27 U2 TRB DIFF 1564.4 68.6 1.12 13.9 4.09 U2 TRB DIFF 1564.1 1481.2 535.9 2.23 1810.7 0.49 TRB DIFF 1564.1 1564.1 1536.1 2.23 1810.7 0.48 TRB DIFF 1564.1 1542.7 536.2 2.23 1810.7 0.48 TRB DIFF 1564.1 1542.7 536.2 2.23 1810.7 0.47 U2 TRB DIFF 1564.1 1542.7 536.2 2.23 1810.7 0.47 U2 TRB DIFF 1564.1 1542.7 536.2 2.23 1810.7 0.47 U2 TRB DIFF 1564.1 1542.7 536.2 2.23 1810.7 0.48 U2 TRB DIFF 1564.1 1542.7 536.2 2.23 1810.7 0.47 U2 TRB DIFF 1564.1 1542.7 536.2 2.23 1810.7 0.47 U2 TRB DIFF 1564.1 1542.7 536.2 2.23 1810.7 0.47 U2 TRB DIFF 1564.1 1542.7 536.2 2.23 1810.7 0.47 U2 TRB DIFF 1564.1 1542.7 536.2 2.23 1810.7 0.47 U2 TRB DIFF 1564.1 1544.1 1542.7 536.2 2.23 1810.7 0.47 U2 TRB DIFF 1564.1 1544.1 1542.7 536.2 2.23 1810.7 0.47 U2 TRB DIFF 1564.1 1544.1 15						0.29
H2 TRB DIFFUSCR 1641.7 1040.4 1.06 3595.0 0.28 H2 BST TRB DUT 1606.3 1038.0 1.06 3585.5 0.28 H2 BST TRB DUFF 1601.4 1038.0 1.06 3585.5 0.28 12 BST TRB DUFF 1601.4 1038.0 1.06 3585.5 0.28 12 BST TRB DUFF 1601.4 1038.0 1.06 3585.5 0.28 12 BST TRB DUFF 1574.8 1036.7 1.06 3580.4 0.27 12 BST TRB DUFF 1574.8 1036.7 1.06 3580.4 0.27 12 TANK PRESS 18.6 1057.3 0.0017 3613.1 0.0033 12 TANK PRESS 18.6 1057.3 0.0017 3613.1 0.27 12 TANK PRESS 18.6 1059.3 0.0017 3613.1 0.27 12 TANK PRESS 18.6 10.27 12 TANK PRESS 18.6 10.2 12						0.28
H2 BST TRB IN 1606.3 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 102 BST TRB IN 1585.4 1038.1 1.06 3585.5 0.28 102 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 102 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 102 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 102 TANK PRESS 18.6 1057.3 0.0017 3613.1 0.0033 102 TANK PRESS 18.6 1057.3 0.0017 3613.1 0.27 102 TANK PRESS 18.6 102 TANK PRESS 18.6 10.2 TANK						0.28
H2 BST TRB DUT 1601.4 1038.0 1.06 3585.5 0.28 H2 BST TRB DIFF 1601.4 1038.0 1.06 3585.5 0.28 OZ BST TRB 1N 1585.4 1038.1 1.06 3585.5 0.28 OZ BST TRB DUT 1575.6 1036.7 1.06 3580.4 0.27 OZ BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 H2 TANK PRESS 18.6 1057.3 0.0017 3613.1 0.0033 GOX HEAT EXCH IN 1567.0 1046.1 1.12 3613.1 0.27 GOX HEAT EXCH OUT 1559.1 1045.4 1.12 3610.3 0.27 MIXER H0T IN 1559.1 1045.4 1.12 3610.3 0.27 MIXER COLD IN 1496.4 68.6 1.12 13.9 4.09 MIXER COULD IN 1496.4 68.6 1.12 13.9 4.09 MIXER OUT 1681.2 535.9 2.23 1810.7 0.49 FSOV INLET 1481.2 535.9 2.23 1810.7 0.49 FSOV EXIT 1444.1 536.1 2.23 1810.7 0.48 CMANBER INJ 1429.7 536.2 2.23 1810.7 0.48						0.28
H2 BST TRB DIFF 1801.4 1038.1 1.06 3585.5 0.28 02 BST TRB DUT 1575.6 1036.7 1.06 3580.4 0.27 02 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 02 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 02 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 02 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 02 02 02 02 02 02 02 02 02 02 02 02 02		• • • • • •				0.28
02 BST TRB IN 1585.4 1038.1 1.06 3580.4 0.27 02 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 02 BST TRB DIFF 1574.8 1036.7 1.06 3580.4 0.27 H2 TANK PRESS 18.6 1057.3 0.0017 3613.1 0.0033 GOX HEAT EXCH IN 1567.0 1046.1 1.12 3610.3 0.27 GOX HEAT EXCH OUT 1559.1 1045.4 1.12 3610.3 0.27 HIXER HOT IN 1559.1 1045.4 1.12 3610.3 0.27 HIXER COLD IN 1496.4 68.6 1.12 13.9 4.09 HIXER COLD IN 1496.4 68.6 1.12 13.9 4.09 HIXER OUT 1681.2 535.9 2.23 1810.7 0.49 FSOV INLET 1481.2 535.9 2.23 1810.7 0.49 FSOV INLET 1464.1 536.1 2.23 1810.7 0.48 CHAMBER INJ 1429.7 536.2 2.23 1810.7 0.67	H2 BST TRB DIFF	-				0.28
O2 BST TRB OUT 1575.6 1036.7 1.06 3580.6 0.27 O2 BST TRB DIFF 1574.8 1036.7 1.06 3580.6 0.27 H2 TANK PRESS 18.6 1057.3 0.0017 3613.1 0.0033 GOX HEAT EXCH IN 1547.0 1046.1 1.12 3610.3 0.27 GOX HEAT EXCH OUT 1559.1 1045.4 1.12 3610.3 0.27 MIXER HOT IN 1559.1 1045.4 1.12 3610.3 0.27 MIXER COLD IN 1496.4 68.6 1.12 13.9 4.09 MIXER COUT 1481.2 535.9 2.23 1810.7 0.49 FSOV INLET 1481.2 535.9 2.23 1810.7 0.49 FSOV EXIT 1444.1 536.1 2.23 1810.7 0.48 CHAMBER INJ 1429.7 536.2 2.23 1810.7 0.47						
O2 BST TRB DIFF 15/4.8 1055.7 0.0017 3613.1 0.0033 H2 TANK PRESS 18.6 1057.3 0.0017 3613.1 0.27 GOX HEAT EXCH IN 1567.0 1046.1 1.12 3610.3 0.27 GOX HEAT EXCH OUT 1559.1 1045.4 1.12 3610.3 0.27 HIXER HOT IN 1559.1 1045.4 1.12 3610.3 0.27 HIXER COLD IN 1496.4 68.6 1.12 13.9 4.09 HIXER OUT 1481.2 535.9 2.23 1810.7 0.49 FSOV INLET 1481.2 535.9 2.23 1810.7 0.49 FSOV EXIT 1444.1 536.1 2.23 1810.7 0.48 CHARBER INJ 1429.7 536.2 2.23 1810.7 0.49						
H2 TANK PRESS 18.6 1057.3 0.0017 GOX HEAT EXCH IN 1567.0 1046.1 1.12 3613.1 0.27 GOX HEAT EXCH OUT 1559.1 1045.4 1.12 3610.3 0.27 HIXER HOT IN 1559.1 1045.4 1.12 3610.3 0.27 HIXER COLD IN 1496.4 68.6 1.12 13.9 4.09 HIXER OUT 1481.2 535.9 2.23 1810.7 0.49 FSOV INLET 1481.2 535.9 2.23 1810.7 0.49 FSOV INLET 1464.1 536.1 2.23 1810.7 0.48 CHAMBER INJ 1429.7 536.2 2.23 1810.7 0.47	OZ BST TRB DIFF					0.0033
GOX HEAT EXCH IN 1557.0 1045.1 1045.4 1.12 3610.3 0.27 GOX HEAT EXCH OUT 1559.1 1045.4 1.12 3610.3 0.27 MIXER HOT IN 1559.1 1045.4 1.12 3610.3 0.27 MIXER COLD IN 1496.4 68.6 1.12 13.9 4.09 MIXER OUT 1481.2 535.9 2.23 1810.7 0.49 FSOV INLET 1481.2 535.9 2.23 1810.7 0.49 FSOV EXIT 1444.1 536.1 2.23 1810.7 0.48 CHAMBER INJ 1429.7 536.2 2.23 1810.7 0.67						
GOX HEAT EXCH OUT 1559-1 1045-4 1.12 3610.3 0.27 HIXER HOT IN 1559-1 1045-6 1.12 3610.3 0.27 MIXER COLD IN 1496-6 68-6 1.12 13.9 4.09 MIXER OUT 1481.2 535.9 2.23 1810.7 0.49 FSOV INLET 1481.2 535.9 2.23 1810.7 0.49 FSOV EXIT 1444-1 536-1 2.23 1810.7 0.48 CHARBER INJ 1429-7 536-2 2.23 1810.7 0.47						0.27
MIXER HOT IN 1559.1 1045.4 1.12 13.9 4.09 MIXER COLD IN 1496.4 68.6 1.12 13.9 4.09 MIXER OUT 1481.2 535.9 2.23 1810.7 0.49 FSOV INLET 1481.2 535.9 2.23 1810.7 0.49 FSOV EXIT 1444.1 536.1 2.23 1810.7 0.48 CHAMBER INJ 1429.7 536.2 2.23 1810.7 0.67	GOX HEAT EXCH OU					
MIXER COLD IN 1496.4 681.6 1.12 1.12 0.49 MIXER OUT 1481.2 535.9 2.23 1810.7 0.49 FSOV INLET 1481.2 535.9 2.23 1810.7 0.49 FSOV EXIT 1446.1 536.1 2.23 1810.7 0.48 CHAMBER INJ 1429.7 536.2 2.23 1810.7 0.67	MIXER HOT IN	1559.1				
HIXER OUT 1681.2 535.9 2.23 1810.7 0.49 FSOV INLET 1481.2 535.9 2.23 1810.7 0.48 FSOV EXIT 1644.1 536.1 2.23 1810.7 0.47 CHARBER INJ 1429.7 536.2 2.23 1810.7 0.67	MIXER COLD IN					
FSOV INLET 1481.2 535.9 2.23 1810.7 0.48 FSOV EXIT 1444.1 536.1 2.23 1810.7 0.48 CHAMBER INJ 1429.7 536.2 2.23 1810.7 0.47	MIXER OUT	1481.2				-
FSDV EXIT 1444.1 536.1 2.23 1810.7 0.67 CHAMBER INJ 1429.7 536.2 2.23 1810.7 0.67		1481.2				
CHAMBER INJ 1429.7 536.2 2.23 1810.7		1444.1				
		1429.7	536.2	2.23	1810.7	0.47
	CHAMBER	1329.9				

	■ DXYI	GEN SYSTEM		S •	mes at 1 TM
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
	16.0	162.7	13.4	61.1	71.17
B.P. INLET		163.2	13.4	61.5	71.20
B.P. EXIT	135.6		13.4	61.5	71.20
PUHP INLET	135.6	163.2		68.9	71.42
PUMP EXIT	2153.8	173.7	13.4		0.12
02 TANK PRESS	16.0	400.0	0.023	204.7	
	2132.3	173.B	13.4	68.9	71.39
OCV INLET		176.2	13.4	68.9	70.38
DCV EXIT	1492.6			68.9	70.34
CHAMBER INJ	1462.9	176.3	13.4	00.7	
CHAMBER	1329.9				

		VALVE DA	TA #	
VALVE	DELTA P	AREA	FLOH	* BYPASS
18A	264.	0.05	1.12	50.00
TBV	2028.	0.00	0.06	5.00
	37.	0.77	2.23	
FSOV OCV	640.	0.09	13.39	

	•	INJECTOR I	ATA #	
INJECTOR	DELTA P	AREA	FLOM	VELOC I TY
FUEL	100.	0.53	2.23	1288.81
LOX	148.	0.21	13.39	132.35

TABLE 14. — SPLIT-EXPANDER ENGINE — 7500 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

	HINERY PERFORMANCE DATA .

# HZ BOOST TURBINE #	# H2 MOOST PUMP *
*************	*************************
EFFICIENCY (T/T) 0.789	
EFFICIENCY (T/S) 8,584	EFFICIENCY 0.766 HORSEPOHER 14.
SPEED (RPM) 75254.	SPEED (RPH) 75254.
HEAN DIA (IN) 1.16 EFF AREA (IN2) 0.48	\$ SPEED 3051.
U/C (ACTUAL) 0.553	
HAX TIP SPEED 484.	TIP SPEED 438.
STAGES 1	
	HEAD COEF 0.450 FLOW COEF 0.201
PRESS RATIO (T/T) 1.01 PRESS RATIO (T/S) 1.02	V.201
HORSEPOHER 14. EXIT MACH HUMBER 0.07	
SPECIFIC SPEED 128.86	
SPECIFIC DIAMETER 0.68	
********	600000000
# H2 TURBINE #	P H2 PUMP #
*********	**********
	STAGE ONE STAGE THO STAGE THREE
EFFICIENCY (T/T) 8.763	EFFICIENCY 0.617 0.699 0.517
EFFICIENCY (T/S) 0.750 SPEED (RPH) 187500.	PLUKSEPUMER 369. 238. 212.
HORSEPOHER #19	SPEED (RPH) 187500. 187500. 187500. SS SPEED 9345.
HEAN DIA. (IN) 2.36 EFF AREA (IN2) 8.08	P. PROCESS
EFF AREA ([N2) 8.08 U/C (ACTUAL) 8.523	
MAX TIP SPEED 2000.	2.39
STAGES 2	VOL. FLOM 233. 124, 126.
GAMMA 1.58 PRESS RATIO (T/T) 1.96	HEAD COEF 8.520 0.489 0.453
PRESS RATIO (T/T) 1.96 PRESS RATIO (T/S) 1.98	FLON COEF 0.096 DIAMETER BATIO 0.324
EXIT MACH HUMBER 0.12 SPECIFIC SPEED 28.21	MEARING DH 3.08E+06
SPECIFIC SPEED 28.21 SPECIFIC DIAMETER 2.51	SHAFT DIAMETER 16.00
Sectific biaseign 2.51	
= 02 BOOST TURBINE #	
************	* 02 BOOST PLMP *
EFFICIENCY (T/T) 0.811	
EFFICIENCY (1/5) 0,739	EFFICIENCY 0.764 HORSEPONER 8.
SPEED (RPM) 20182.	SPEED (RPH) 20182.
MEAN DIA (IN) 3.19 EFF AREA (IN2) 0.95	\$ SPEED 3026.
U/C (ACTUAL) 8,553	MEAD (FT) 262. DIA. (IN) 1.69
MAX TIP SPEED 307.	7 IP SPEED 152.
STAGES 1	VOL. FLON 85.
PRESS RATIO (T/T) 1.01	HEAD COEF 0.450 FLOW COEF 0.200
PRESS RATIO (T/S) 1.01	5.200
HORSEPONER 8.	
EXIT MACH HUMBER 0.03 SPECIFIC SPEED 61.66	
SPECIFIC DIAMETER 1.29	
*********	8530>>>==0
* C2 TURBINE *	* 02 PUMP *

EFFICIENCY (T/T) 0.772	EFFICIENCY 0.703
EFFICIENCY (T/S) 0.743	HORSEPONER 141.
SPEED (RPH) 112615. HORSEPOHER 141.	SPEED (RPH) 112615.
MEAN DIA (IN) 2.36 EFF AREA (IN2) 0.12	SS SPEED 20241. S SPEED 2030.
EFF AREA (1H2) 0.12 U/C (ACTUAL) 0.535	HEAD (FT) 4068,
MAX TIP SPEED 1201.	
STAGES 1	TIP SPEED 565. VOL. FLON 84.
GAIPIA 1,58	HEAD COEF 0.410
PRESS RATIO (T/T) 1.11 PRESS RATIO (T/S) 1.11	FLOW COEF 0.143
EXIT MACH NUMBER 0.07 SPECIFIC SPEED 29.16	DIAMETER RATIO 0.686 BEARING DN 1.58E+06
SPECIFIC SPEED 29.16	SHAFT DIAMETER 14.00
SPECIFIC DIAMETER 2.51	

TABLE 15. — SPLIT-EXPANDER ENGINE — 15,000 LBF THRUST (COPPER TUBE CHAMBER)

CHAMBER PRESSURE	1610.6
VAC ENGINE THRUST	15000.
TOTAL ENGINE FLON RATE	31.25
DEL. VAC. ISP	480.0
THROAT AREA	4.55
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	76.15
ENGINE MIXTURE RATIO	6.00
ETA C#	0.993
CHAMBER COOLANT DP	602.
CHAMBER COOLANT DT	1121.
NO 271 F/CHAMBER Q	9203.

		********	*******	••	
	- 6161	SYSTEM COND	ITIONS *		
	PDESS	TEMP	FLOH	ENTHALPY	NATISHED
STATION	18.6	37.4	4.47	-107.5	4.37
B.P. INLET	100.3	38.5	4.47	-103.0	4.39
B.P. EXIT	100.3	38.5	4.47	-103.0	4.39
PUMP INLET 1ST STAGE EXIT JBV INLET JBV EXIT	2166.6	72.6	4.47	40.2	4.29
151 STAGE EAST	2132.2	72.9	2.23	40.2	4.27
JBV EXIT	1812.3	75.2	2.23	40.2	4.05
2ND STAGE EXIT	3476.6	95.3	2.23 2.23 2.23	136.0	4.25
DIMO FYIT	4736.6	116.4		227.4	4.26
COOLANT INLET	4689.2	116.7	2.23	227.4	4.24
COOL ANT EXIT	4087.5	1237.4	2.23	4347.3	0.57
	4046.6	1237.7	0.11	4347.3	0.57
TBV EXIT	1898.0	1253.4 1237.7 1209.6 ,1209.6	0.11	4347.3	0.27
02 TRB INLET	4046.6	1237.7	2.12	4347.3	
OZ TRB EXIT	3594.2	1209.6	2.12	4236.6	0.52 0.52
H2 TRB INLET	3594.2	,1209.6	2.12	4236.6	0.33
			2.12	3737.9	0.33
HO TER DIFFUSER	1985.2	1078.9	2.12	3737.9	0.33
H2 RST TRB IN	1965.4	1078.9	2.12	3737.9	0.32
H2 BST TRB OUT	1943.9	1076.5	2.12	3728.4	0.32
H2 BST TRB DIFF	1938.9	1076.5	2.12	3728-4	0.32
02 BST TRB IN	1919.5	1076.7	2.12	3728.4	0.32
H2 TRB EXIT H2 TRB DIFFUSER H2 BST TRB IN H2 BST TRB OUT H2 BST TRB DIFF O2 BST TRB OUT O2 BST TRB OUT	1908.3	1075.3	2.12	3723.2	0.32
			2.12 2.12 2.12 0.0033	3723.2 3754.4	0.0032
H2 TANK PRESS	18.6	1097.9	0.0033		0.32
H2 TANK PRESS GOX HEAT EXCH IN GOX HEAT EXCH OU HIXER HOT IN HIXER COLD IN HIXER OUT FSOV INLET	1898.0	1084.3	2.23	3754.4	0.31
GOX HEAT EXCH OU	T 1888.5	1083.6	2.23	3751.7	0.31
MIXER HOT IN	1888.5	1083.6	2.23	3751.7 40.2	4.05
MIXER COLD IN	1812.3	75.2	2.23	1004 4	0.56
MIXER OUT	1794.1	557.6	4.46	1894.6	0.56
FSOV INLET	1794.1	557.6	4.46		0.55
FSOV INLET FSOV EXIT	1749.3	557.8	4.46	1894.6 1894.6	0.55
CHAMBER INJ	1731.6	558.0	4.46	1874.	•
CHAMBER	1731.6 1610.6				
	- 01	YGEN SYSTEM	CONDITIONS		
	20F99	TEMP	FLON	ENTHALPY 61.1	DENSITY
STATION B.P. INLET	16.0	162.7	26.8	61.1	71-17
			24 0	61.5	71.20
B.P. EXIT	135.6	163.2 163.2	26.8	61.5	71.20
B.P. EXIT PUMP INLET PUMP EXIT 02 TANK PRESS OCY INLET	2608.5	175.2	26.8	70.2	71.61
PUMP EXII	16.0	400.0	0.045	204.7	0.12
OZ TARK FRESS	2582.4	175.3	26.8	70.2	71.57
OCV EXIT	1807.7	178.2	26.8	70.2	70.36
CHAMBER INJ	1771.7	178.4	26.B	70.2	70.30
CHAMBER	1610.6				
CAMPIDER	• • • • • • • • • • • • • • • • • • • •				
		. VALVE DA	ATA .	% BYPASS	
VALVE	DELTA	P AREA	FLUM	50.00	
JBV	DELTA 1 320 2149 45	. 0.07	4.23	5.00	
TBV	2149	. 0.01 . 1.30	0.11	3.00	
FSOV	45	1.30	4.46		
OCA	775	0.17	26.79		
		# INJECTOR	DATA .		
INJECTOR	DELTA	P AREA . 0.90	FLOM	VELOCITY	
FUEL	121	0.90	4.46	1327.74	
LOX	179	0.38	26.79	145.68	
2011					

TABLE 15. — SPLIT-EXPANDER ENGINE — 15,000 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

THOMPORTUR #	NERY PERFORMANCE DATA	
######################################	*********	
P H2 BOOST TURBINE #	* H2 BOOST P	
EFFICIENCY (T/T) 0.815 EFFICIENCY (T/S) 0.622	EFFICIENCY	0.766
SPEED (RPH) 53238.	HORSEPOHER	28.
MEAN DIA ATUS SAA	SPEED (RPH) S SPEED	53238. 3050.
EFF AREA (IN2)].18	HEAD (FT)	2685.
U/C (ACTUAL) 0.553	HEAD (FT) DIA. (IN)	1.80
MAX TIP SPEED 476.	TIP SPEED	438.
STAGES 1	YOL. FLON	457.
PRESS RATIO (T/T) 1.81	HEAD COEF FLOH COEF	0.450
PRESS RATIO (T/T) 1.01 PRESS RATIO (T/S) 1.01	rear coer	0.201
HORSEPOHER 28.		
EXIT HACH HUMBER 0.86		
SPECIFIC SPEED 117.16 SPECIFIC DIAMETER 0.71		
SPECIFIC DIAMETER 0.71		
01044148000000	********	
= H2 TURBINE =	# H2 PUHP	

		STAGE THO STAGE THREE
EFFICIENCY (T/T) 0.779	EFFICIENCY 0.617	0.592 0.400
EFFICIENCY (T/S) 0.763	HORSEPOHER 905.	303. 289.
HORSEPOLER	EFFICIENCY 0.617 HORSEPOHER 905. SPEED (RPH) 136363.	136363. 136363.
EFFICIENCY (T/S) 0.763 SPEED (RPH) 136363. HORSEPONER 1697. HEAN DIA. (IN) 3.26 EFF AREA (IN2) 0.15		
EFF AREA (IN2) 8.15	S SPEED 694. HEAD (FT) 68810. DIA. (IN) 3.39	486. 705. 44229. 42620. 2.82 2.82
U/C (ACTUAL) 0.548	DIA. (IN) 3,39	2.82 2.82
MAX TIP SPEED 2000.	11 SPEED 2020.	1677. 1677.
STAGES 2 GAMMA 1.68	YUL. FLUM 467.	236. 235.
PRESS RATIO (T/T) 1.79	HEAD COEF 0.542 FLOH COEF 0.089	0.506 0.480
PRESS RATIO (T/S) 1.82	DIAMETER RATIO 0.304	
EXIT MACH NUMBER 0.12 SPECIFIC SPEED 29.04	BEARING DN 3.00E+06	
SPECIFIC SPEED 29.04	SHAFT DIAMETER 22.00	
SPECIFIC DIAMETER 2.57		
***************************************	=======================================	
= 02 BOOST TURBINE =	P 02 BOOST PU	
		••••
EFFICIENCY (T/T) 9.827	EFFICIENCY	0.764
EFFICIENCY (T/S) 8.759	EFFICIENCY HORSEPONER	15.
SPEED (RPH) 14271.	SPEED (RPM)	14271.
MEAN DIA (IN) 4.50 EFF AREA (IN2) 1.64	S SPEED	3026.
	HEAD (FT) DIA. (IN)	242. 2.11
MAX TIP SPEED 305.	TIP SPEED	132.
STAGES 1	VOL. FLOW	169.
GAMMA 1.48	HEAD COEF FLOH COEF	0.450
PRESS RATIO (T/T) 1.01 PRESS RATIO (T/S) 1.01	FLOH COEF	0.200
HORSEPOHER 15.		
EXIT MACH NUMBER 8.02		
SPECIFIC SPEED 58.28		
SPECIFIC DIAMETER 1.38		
BEREFERENCE B	*********	
OZ TURBINE B	= 02 PUP =	
EFFICIENCY (T/T) 0.779	EFF ICIDICY	0.730
EFFICIENCY (T/S) 8.755	HORSEPOHER	332.
SPEED (RPH) 85773. HORSEPOHER 132.	SPEED (RPH)	85773.
MEAN DIA CINI T TA	2 25ED 22 25ED	21801.
EFF AREA (IN2) 8.28	3 3 660	1879. 4971.
WC (ACTUAL) 0.518	HEAD (FT) DIA. (IN)	1.65
MAX TIP SPEED 1257.	TIP SPEED	617.
STAGES 1	VOL. FLON	160.
PRESS RATIO (T/T) 1.13	HEAD COEF	0.420
PRESS RATIO (T/T) 1.13 PRESS RATIO (T/S) 1.13	FLOW COEF	0.157
EXIT MACH NUMBER 0.07	DIAMETER RATIO BEARING DN 1.	0.683 37F+06
SPECIFIC SPEED 26.93	SHAFT DIAMETER	16.00
SPECIFIC DIAMETER 2.64		

TABLE 16. — SPLIT-EXPANDER ENGINE — 25,000 LBF THRUST (COPPER TUBE CHAMBER)

CHAMBER PRESSURE	1712.8
VAC FNGINE THRUST	25000.
TOTAL ENGINE FLOW RATE	52.08
DEL. VAC. ISP	480.0
THROAT AREA	7.14
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	95.35
FIGURE MIXTURE RATIO	6.00
ETA Cª	0.993
CHAMBER COOLANT DP	616.
CHAMBER COOLANT DT	1010.
NOZZLE/CHAMBER Q	13870.

	********	*******	*********		
	# EUE1 9	SYSTEM CON	* ZMOLTIO		
	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
STATION B.P. INLET	18.6	37.4	7.45	-107.5	4.37
B.P. EXIT	101.2	38.5	7.45	-103.0	4.39
PUMP INLET	101.2	38.5	7.45	-103.0	4.39
1ST STAGE EXIT	2301.9	70.0	7.45	36.1	4.42
	2267.4	70.3	3.72	36.1	4.40
JBV EXIT	1927.3	73.0	3.72	36.1	4.17
2ND STAGE EXIT	3708.6	90.5	3.72	127.7	4.43
PUMP EXIT	5091.3	110.0	3.72	216.8	4.47 4.45
COOLANT INLET	5040.4	110.4	3.72	216.8	0.67
COOLANT EXIT	4424.2	1119.9	3.72	3942.2	0.67
TBV INLET	4379.9	1120.2	0.19	3942.2 3942.2	0.32
TBV EXIT		1137-1	0.19	3942.2	0.67
02 TRB INLET	4379.9	1120.2	3.54 3.54	3827.0	0.61
	3864.7	1091.1	3.54	3827.0	0.61
		1091.1	3.54	3343.9	0.39
H2 TRB EXIT	2134.2	965.0 965.1	3.54	3343.9	0.39
H2 TRB DIFFUSER	2113.7	965.1	3.54	3343.9	0.39
	2092.6	965.1 962.7	3.54	3334.3	0.38
H2 BST TRB OUT H2 BST TRB DIFF		962.7	3.54	3334.3	0.38
OZ BST TRB IN	2042.9	962.9	3.54	3334.3	0.38
	2030.2	961.5	3.54	3329.2	0.38
02 BST TRB DIFF	2029.4	961.5	3.54	3329.2	0.38
H2 TANK PRESS	18.6	984.3	0.0061	3359.8	0.0036
GOX HEAT EXCH IN		970.3	3.72	3359.B	0.37
GOX HEAT EXCH OUT		969.6	3.72	3357.1	0.37
MIXER HOT IN		969.6	3.72	3357.1	0.37
	1927.3	73.0	3.72	36.1	4.17
MIXER DUT	1908.7	502.4	7.44	1695.3	0.66
FSOV INLET	1908.7	502.4	7.44	1695.3	0.66
FSOV EXIT	1861.0	502.6	7.44	1695.3	0.65 0.64
CHAMBER INJ	1842.6	502.7	7.44	1695.3	0.44
CHAMBER	1712.8				
	# 0XV	SEN SYSTEM	CONDITION	s •	
STATION	PRESS	TEMP	FLON	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	44.7	61.1	71.17
B.P. EXIT	135.6	163.2	44.7	61.5	71.20
PUMP INLET	135.6	163.2	44.7	61.5	71.20
PUMP EXIT	2773.9	175.4	44.7	70.6	71.73
D2 TANK PRESS	16.0	400.0	0.076	204.7	0.12
02 TANK PRESS	2746.2	175.5	44.6	70.6	71.68
OCV EXIT	1922.3	178.7	44.6	70.6	70.40
CHAMBER INJ	1884.l	178.8	44.6	70.6	70.34
CHAMBER	1712.8				
		. VALVE DA	TA =		
MAL ME	DELTA P		FLOH	* BYPASS	
JBV JBV	340.		3.72	50.00	
TBV	2361.	0.01	0.19	5,00	
FSOV	48.	1.93	7.44		
DCV	824.		44.64		
- -					
	_	INJECTOR	DATA #		
	DEL TA D	AREA	FLO≌	VELOC! TY	
INJECTOR	DELIA P	1.33	7.44	1274.82	
FUEL.	130.			150.19	
FOX	170.	J. V.			

TABLE 16. — SPLIT-EXPANDER ENGINE — 25,000 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

TURBONACHI	HERY PERFORMANCE DATA B				
# H2 BOOST TURBINE #	**************************************				
	- 15 20031 1				
EFFICIENCY (T/T) 8.873	EFF101ENCY	0.765			
EFFICIENCY (T/S) 0.484	HORSEPONER	48.			
SPEED (RPH) 41431, MEAH DIA (1H) 2.12	SPEED (RPH) S SPEED	41431. 3042.			
EFF AREA (1M2) 1.70	HEAD (FT)	2712.			
U/C (ACTUAL) 0.553 HAX TIP SPEED 471.	DIA. (IN) TIP SPEED	2.43 440.			
STAGES 1	VOL. FLOH	761.			
GAMMA 1.44 PRESS RATIO (T/T) 1.61	HEAD COEF FLOH COEF	0.450 0.200			
PRESS RATIO (T/S) 1.01	TEM COD	0.200			
HORSEPOHER 68. EXIT MACH HUMBER 8.06					
SPECIFIC SPEED 114.95					
SPECIFIC DIMETER 0.75					
• H2 TURBINE *	* H2 PUMP				
*********	*******	••			
	STAGE ONE	STAGE THO STAGE THREE			
EFFICIENCY (T/T) 0.828	EFFICIENCY 0.664	0.642 0.645			
EFFICIENCY (T/S) 0.812 SPEED (RPH) 125000. HORSEPOMER 2418.	HORSEPONER 1465. SPEED (RPH) 125000.	483. 478. 125000. 125000.			
HORSEPONER 2418.	22 2PEED 11287.				
MEAN DIA. (IN) 3.16 EFF AREA (IN2) 8.21	S SPEED 783. HEAD (FT) 71837,	776. 786. 45767. 44733.			
U/C (ACTUAL) 0.495 MAX TIP SPEED 1000.	DIA. (IN) 3.79	3.09 3.09			
STAGES 2	TIP SPEED 2066. VOL. FLON 756.	1688. 1688. 377. 374.			
POECE DATIO (T/T) 1 AL	HEAD COEF 8.541 FLOH COEF 8.096	0.517 0.505			
PRESS RATIO (T/S) 1.83	DIMETER RATIO 8.333				
EXIT MACH NUMBER 8,12	SEARING DN 3.00E+06 SHAFT DIAMETER 24,00				
SPECIFIC DIMETER 2.10	SHAFT DIAMETER 24.00				
* 02 BOOST TURBINE *	P*************************************				
************************	* 02 BOOST PU				
EFFICIENCY (T/T) 8.869	EFF1C1ENCY	0.764			
EFFICIENCY (T/S) 0.802	HORSEPOHER	26.			
SPEED (RPH) 11055. MEAN DIA (IH) 5.82	SPEED (RPH) S SPEED	11055. 3026.			
EFF AREA (1H2) 2.36	HEAD (FT)	242.			
U/C (ACTUAL) 8.553 MAX TIP SPEED 302.	DIA. (IN) TIP SPEED	2.72 132.			
STAGES 1	VOL. FLON	282.			
GAMMA 1.44 PRESS RATIO (T/T) 1.01	HEAD COEF FLON COEF	0.450 0.200			
PRESS RATIO (T/S) 1.81 HORSEPOHER 24.		*****			
EYTT MACH HINDER A AS					
SPECIFIC SPEED 55.64 SPECIFIC DIAMETER 1.47					
SPECIFIC DIAMETER 1.47					
*********	*********				
. 02 TURBINE .	• 02 PUMP =				
*********	**********				
EFFICIENCY (T/T) 0.850	EFFICIENCY	0.747			
EFFICIENCY (T/S) 0.825 SPEED (RPH) 67789.	HORSEPOHER SPEED (RPM)	576.			
HORSEPOHER 576.	SC SPEED	67789. 22244.			
MEAN DIA (IN) 3,16 EFF AREA (IN2) 0.29	S SPEED HEAD (FT)	1827.			
U/C (ACTUAL) 0,550	DIA. (IN)	5295. 2.14			
MAX TIP SPEED 984. STAGES 2	TIP SPEED VOL. FLON	632.			
GAHMA 1.44	HEAD COEF	280. 0.426			
PRESS RATIO (T/T) 1.13 PRESS RATIO (T/S) 1.14	FLOW COEF	0.155			
EXIT MACH NUMBER 0.07	DIAMETER RATIO BEARING DH 1	0.682 .49E+06			
SPECIFIC SPEED 42.69 SPECIFIC DIAMETER 1.85	SHAFT DIAMETER	22.00			
1.83					

TABLE 17. — SPLIT-EXPANDER ENGINE — 37,500 LBF THRUST (COPPER TUBE CHAMBER)

CHAMBER PRESSURE	1608.0
VAC ENGINE THRUST	37500.
TOTAL ENGINE FLON RATE	78.12
DEL. VAC. ISP	480.0
THROAT AREA	11.40
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	120.49
ENGINE MIXTURE RATIO	6.00
ETA C#	0.993
CHAMBER COOLANT DP	547.
CHAMBER COOLANT DT	879.
NOZZLE/CHAMBER Q	18214.

	*********			•••	
	# EUEL !	SYSTEM CON	DITIONS =		
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	11.17	-107.5	4.37
B.P. EXIT	100.9	38.5	11.17	-103.0	4.39
PUMP INLET	100.9	38.5	11.17	-103.0	4.39
IST STAGE EXIT	2161-1	65.1	11.17	19.4	4.49
JBV INLET	212B.7	65.4	5.59	19.5	4.47
JBV EXIT	1809.4	68.2	5.59	19.5	4.26 4.54
2ND STAGE EXIT	3418.3	81.1	5.59	94.6 168.6	4.59
PUMP EXIT	4672.0	96.6 97.0	5.59 5.59	168.6	4.57
COOLANT INLET	4625.3 4078.0	976.2	5.59	3429.6	0.71
COOLANT EXIT	4037.2	976.4	0.28	3429.6	0.71
TBV EXIT	1895.0	991.2	0.28	3429.6	0.34
02 TRB INLET	4037.2	976.4	5.31	3429.6	0.71
OZ TRB EXIT	3542.2	949.6	5.31	3323.8	0.64
H2 TRB INLET	3542.2	949.6	5.31	3323.8	0.64
H2 TRB EXIT	2012.1	841.7	5.31	2908.9	0.43 0.42
H2 TRB DIFFUSER		841.8	5.31	2908.9 2908.9	0.42
H2 BST TRB IN	1968.8	841.8	5.31	2899.3	0.41
H2 BST TRB OUT	1943.3	839.4	5.31 5.31	2899.3	0.41
H2 BST TRB DIFF	1938.3	839.5 839.6	5.31	2899.3	0.41
02 BST TRB IN	1918.9 1905.3	979 2	5.31	2894.2	0.41
02 BST TRB OUT 02 BST TRB DIFF H2 TANK PRESS	1904.5	838.2	5.31 0.0105	2894.2	0.41
H2 TANK PRESS	18.6	857.9	0.0105	2921.0	0.0041
GOX HEAT EXCH IN		845.8	5.58	2921.0	0.40
GOX HEAT EXCH DU		845.1	5.58	2918.2	0.40
MIXER HOT IN	1885.5	845.1	5.58	2918.2	0.40
HIXER COLD IN	1809.4	68.2	5.59	19.5	4.26
MIXER OUT	1791.2	441.3	11.16	1467.5	0.70
FSOV INLET	1791.2	441.3	11.16	1467.5	0.70 0.69
FSOV EXIT	1746.5	441.4	11.16	1467.5 1467.5	0.68
CHAMBER INJ	1728.8	441.5	11.16	1407.3	*
CHAMBER	1608.0				
	# OXY0	EN SYSTEM	CONDITION	S •	
STATION	PRESS	TEMP	FLOM	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	67.1	61.1	71.17
B.P. EXIT	135.6	163.2	67.1	61.5	71.20 71.20
PUMP INLET	135.6	163.2	67.1	61.5	71.75
PUMP EXIT	2604.2	174.3	67.1	69.8 204.7	0.12
02 TANK PRESS	16.0	400.0	0.113 67.0	69.8	71.71
OCV INLET	2578.2	174.4 177.3	67.0	69.8	70.51
DCV EXIT	1804.7 1768.8	177.4	67.0	69.8	70.45
CHAMBER INJ CHAMBER	1608.0	177	• • • • • • • • • • • • • • • • • • • •		
CHARIBER	1000.0				
		 VALVE DA 			
VALVE	DELTA P		FLON		
JBV	319.		5.59	50.00	
VET	2142.	0.02	0.28	5.00	
FSOV	45.	2.90	11.16		
ocv	773.	0.43	66.96		
		INJECTOR			
INJECTOR	DELTA P	AREA	FLON		
FUEL	121.	2.00	11.16		
LOX	179.	0.94	66.96	145.41	

TABLE 17. — SPLIT-EXPANDER ENGINE — 37,500 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

	HERY PERFORMANCE DATA *	
*************	*********	****
* H2 BOOST TURBINE #	* H2 BOOST P	
EFFICIENCY (T/T) 0.884	EFFICIENCY	0.765
EFFICIENCY (T/S) 0.701 SPEED (RPM) 33776,	HORSEPOHER SPEED (RPM)	72. 33776.
MEAN DIA (IN) 2.60	S SPEED	3044.
EFF AREA (IN2) 2.39 U/C (ACTUAL) 8.55%	HEAD (FT) DIA. (IN)	2704. 2.98
MAX TIP SPEED 467.	TIP SPEED	440.
STAGES 1 GAMMA 1.41	VOL. FLOW	1142.
PRESS RATIO (T/T) 1.01 PRESS RATIO (T/S) 1.02	HEAD COEF FLOW COEF	0.450 0.201
PRESS RATIO (T/S) 1.02 HORSEPOMER 72,		
EXIT MACH MUMBER 0.07 SPECIFIC SPEED 112.96		
SPECIFIC SPEED 112.96		
SPECIFIC DIAMETER 0.77		
* H2 TURBINE *	9490948P01	
- IZ TORBINE S	* H2 PUMP	
	STAGE ONE	STAGE THO STAGE THREE
EFFICIENCY (T/T) 0.851	EFFICIENCY 0.697	8.686 0.686
EFF1CIENCY (T/S) 0.829	HORSEPOHER 1936.	COL COC
SPEED (RPH) 107143. HORSEPOMER 3115.	SPEED (RPM) 107143. SS SPEED 11876.	107143. 107143.
MEAN DIA. (IM) 3.70 EFF AREA (1M2) 0.33		889. 893. 40081. 39544.
U/C (ACTUAL) 0.536	HEAD (FT) 66458. DIA. (IN) 6.26	
MAX TIP SPEED 1812.	TIP SPEED 1992.	1577. 1578.
STAGES 2 GAMMA 1.41	VOL. FLON 1116. HEAD COEF 0.539	553. 546.
PRESS RATIO (T/T) 1.76	FLOH COEF 0.102	0.518 0.511
PRESS RATIO (T/S) 1.79 EXIT MACH NUMBER 0.14	DIAMETER RATIO 0.357 BEARING DN 3.00E+06	
SPECIFIC SPEED 38.44	SHAFT DIAMETER 28.00	
SPECIFIC DIAMETER 1.99		
**************	**********	****
• 02 BOOST TURBINE #	# 02 BOOST PU	
EESTOIDEN (177)		-
EFFICIENCY (T/T) 0.877 EFFICIENCY (T/S) 0.812	EFF1C1ENCY HORSEPONER	0.764 39.
SPEED (RPM) 9026.	SPEED (RPM)	9026.
MEAN DIA (IN) 7.12 EFF AREA (IN2) 3.30	S SPEED HEAD (FT)	3026. 242.
U/C (ACTUAL) 8.553	DIA. (IN)	3.34
MAX TIP SPEED 301. STAGES 1	TIP SPEED VOL. FLOM	132. 423.
GAMMA 1.41	HEAD COEF	0.450
PRESS RATIO (T/T) 1.01 PRESS RATIO (T/S) 1.01	FLON COEF	0.200
HORSEPONER 39.		
EXIT MACH NUMBER 0.03 SPECIFIC SPEED 54.11		
SPECIFIC DIAMETER 1.51		
***********	*********	
* C2 TURBINE *	# 02 PUMP =	
EFFICIENCY (T/T) 0.857 EFFICIENCY (T/S) 0.833	EFFICIENCY HORSEPOHER	9.760 795.
SPEED (RPH) \$3578.	SPEED (RPM)	53570.
HORSEPOMER 795. MEAN DIA (IN) 3.70	SS SPEED S SPEED	21532. 1859.
C., (1,142.) 0.43	HEAD (FT) DIA. (IN)	4952.
U/C (ACTUAL) 0.531 MAX TIP SPEED 914.	DIA. (IN) TIP SPEED	2.60
STAGES 2	VOL. FLOM	608. 420.
GAMMA 1.41 PRESS RATIO (T/T) 1.14	HEAD COEF	0.431
PRESS RATIO (T/S) 1.14	FLOH COEF DIAMETER RATIO	0.156 0.683
EXIT MACH MUMBER 0.07 SPECIFIC SPEED 43.23	BEARING DN 1	. 396+06
SPECIFIC SPEED 43.23 SPECIFIC DIAMETER 1.78	SHAFT DIAMETER	26.00

TABLE 18. -- SPLIT-EXPANDER ENGINE - 50,000 LBF THRUST (COPPER TUBE CHAMBER)

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1510.7
VAC ENGINE THRUST	50000.
TOTAL ENGINE FLON RATE	104.17
DEL. VAC. ISP	480.0
THROAT AREA	16.18
NOZZLE AREA RATIO	1008.0
NOZZLE EXIT DIAMETER	143.52
FIGURE MIXTURE RATIO	6.00
FTA CH	0.993
CHAMBER COOLANT DP	487.
	800.
	22180.
CHAMBER COOLANT DT	

			D17100F =		
		SYSTEM CON	FLON	ENTHALPY	DENSITY
STATION	PRESS		14.90	-107.5	4.37
B.P. INLET	18.6	37.4 38.5	14.90	-103.0	4.39
B.P. EXIT	101.0	38.5	14.90	-103.0	4.39
PUMP INLET	101.0	61.4	14.90	6.4	4.54
IST STAGE EXIT		61.7	7.45	6.4	4.52
JBV INLET	1999.8	64.5	7.45	6.4	4.32
JBV EXIT	1699.9	73.9	7.45	67.6	4.60
2ND STAGE EXIT	3125.1 4227.8	86.1	7.45	128.5	4.67
PUMP EXIT COOLANT INLET	4185.5	86.5	7.45	128.5	4.65
COOLANT EXIT	3698.9	886.6	7.45	3106.4	0.71
TBV INLET	3662.0	886.9	0.37	3106.4	0.70
TBV EXIT	1780.3	899.3	0.37	3106.4	0.35
D2 TRB INLET	3662.0	886.9	7.08	3106.4	0.70
OZ TRB EXIT	3201.7	862.1	7.08	3008.4	0.64
H2 TRB INLET	3201.7	862.1	7.08	3008.4	0.64
H2 TRB EXIT	1896.7	769.2	7.08	2649.7	0.44
H2 TRB DIFFUSER	1871.9	769.4	7.08	2649.7	0.43
HZ BST TRB IN	1853.2	769.4	7.08	2649.7	0.43
H2 BST TRB OUT	1827.1	766.9	7.08	2640.1	0.42
H2 BST TRB DIFF	1822.1	767.0	7.08	2640.1	0.42
02 BST TRB IN	1803.9	767.1	7.08	2640.1	0.42
02 BST TRB OUT	1790.1	765.7	7.08	2635.0	0.42
02 BST TRB DIFF	1789.3	765.7	7.08	2635.0	0.42
HZ TANK PRESS	18.6	783.2	0.0153	2658.6	0.0045
GOX HEAT EXCH IN	1780.3	772.4	7.43	2658.6	0.41
GOX HEAT EXCH OUT	1771.4	771.7	7.43	2655.8	0.41
MIXER HOT IN	1771.4	771.7	7.43	2655.8	0.41
MIXER COLD IN	1699.9	64.5	7.45	6.4	4.32
MIXER OUT	1682.8	405.4	14.88	1329.7	0.72 0.72
FSOV INLET	1682.8	405.4	14.88	1329.7	0.72
FSOV EXIT	1640.8	405.6	14.88	1329.7	0.70
CHAMBER INJ	1624.3	405.6	14.88	1329.7	0.70
CHAMBER	1510.7				
				_	
		GEN SYSTEM			DENSITY
STATION	PRESS	TEMP	FLOH	ENTHALPY 61.1	71.17
B.P. INLET	16.0	162.7	89.4	61.5	71.20
B.P. EXIT	135.6	163.2	89.4	61.5	71.20
PUMP INLET	135.6	163.2	89.4	69.2	71.75
PUMP EXIT	2446.6	173.3	89.4	204.7	0.12
DZ TANK PRESS	16.0	400.0	0.151	69.2	71.71
OCV INLET	2422.1	173.4	89.3	69.2	70.58
OCV EXIT	1695.5	176.2	89.3	69.2	70.53
CHAMBER INJ	1661.7	176.3	89.3	87.4	10.55
CHAMBER	1510.7				
		# VALVE DA		P. DVD400	
VALVE	DELTA P		FLOW	% BYPASS	
JBV	300.		7.45	50.00 5.00	
TBV	1882.		0.37	5.40	
FSOV	42.		14.88		
ocv	727.	0.59	89.29		
			- · · ·		
		* INJECTOR		VELOCITY	
INJECTOR	DELTA P		FLOM	1142.70	
FUEL	114.		14.88	140.86	
LOX	168.	1.29	89.29	140.06	

TABLE 18. — SPLIT-EXPANDER ENGINE — 50,000 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

■ TURBO	DMACHINERY PERFORMANCE DATA =					
•••••	*******************					

# H2 BOOST TURBINE	* H2 BOOST PUMP *					

EEE161000 1777 A	•••					
EFFICIENCY (T/T) 0.8 EFFICIENCY (T/S) 0.7	0.703					
SPEED (RPM) 2925	711 HORSEPOHER 96. 59. SPEED (RPH) 29259.					
MEAN DIA (IN) 1	.00 S SPEED 3044.					
EFF AREA (1N2) 3.						
	555 DIA. (IN) 3.44					
	14. TIP SPEED 440. 1 VOL. FLON 1523.					
GAPHA 1.	40 HEAD COFF 0.458					
PRESS RATIO (T/T) 1.	81 FLON COEF 0.201					
PRESS RATIO (T/S)). HORSEPOWER 9	92 96.					
EXIT HACH MUMBER 0.						
SPECIFIC SPEED 112.	51					
SPECIFIC DIAMETER 0.	77					

* H2 TURBINE #	# H2 PUMP #					
**********	D#22454018					
	STAGE ONE STAGE THO STAGE THREE					
EFFICIENCY (T/T) 0.8	69 EFFICIENCY 0.726 0.723 8.722					
FFFICIENCY (T/S) 0.8	43 HORSEPOHER 2304, 645, 642,					
SPEED (RPM) 10000	B. SPEED (RPM) 100000 100000 100000					
HORSEPONER 359 HEAN DIA. (IN) 3.	1. SS SPEED 12793.					
HEAN DIA. (IN) 3. EFF AREA (IN2) 0.	1. SS SPEED 12793. 47 S SPEED 900. 1065. 1063. 47 HEAD (FT) 61758. 34459. 34238. 34 DIA. (IN) 4.44 3.39 3.39					
U/C (ACTUAL) 0.5	34 DIA. (IN) 4.44 3.39 3.39					
MAX TIP SPEED 170	8. TIP SPEED 1939. 1479. 1479.					
21 W/YC 2	2 VOL. FLON 1472. 726. 716.					
PRESS RATIO (T/T) 1.0						
PRESS RATIO (T/S) 1. EXIT MACH MUMBER 0.1 SPECIFIC SPEED 46.	15 BEARING DN 3.00E+06					
SPECIFIC SPEED 46.1	16 SHAFT DIAMETER 30.00					
SPECIFIC DIAMETER 1.	••					

* 02 BOOST TURBINE						
	•					
EFFICIENCY (T/T) 0.88	EFFICIENCY 0.764					
EFFICIENCY (T/S) 0.81						
SPEED (RPM) 78)7 MEAN DIA (IN) 8.2						
EFF AREA (IN2) 4.3	22 \$ SPEED 3026. 80 HEAD (FT) 242.					
U/C (ACTUAL) 0.55						
HAX TIP SPEED 301	• • • • • • • • • • • • • • • • • • • •					
STAGES GAPPA 1.6	1 VOL. FLON 564, 10 HEAD_COEF 9,450					
PRESS RATIO (T/T) 1.0						
PRESS RATIO (T/S) 1.0	01					
HORSEPONER 51	_					
EXIT MACH HUMBER 0.0 SPECIFIC SPEED 53.7	13 10					
SPECIFIC DIAMETER 1.5						
* 02 TURBINE *	#####################################					
	* ()2 P()+P n					
= 02 TURBINE =	* 02 PUMP **					
# 02 TURBINE #	# 02 PUMP # ################################					
= 02 TURBINE =	# 02 PUMP # ################################					
# 02 TURBINE *	# 02 PUMP # ################################					
# 02 TURBINE ** EFFICIENCY (T/T)	# 02 PUMP # ################################					
# 02 TURBINE *	# 02 PUMP # ################################					
# 02 TURBINE ** EFFICIENCY (T/T)	# 02 PUMP # ################################					
# 02 TURBINE *	# 02 PUMP # ################################					
# 02 TURBINE * * * * * * * * * * * * * * * * * * *	# 02 PUMP # ################################					
# 02 TURBINE *	# 02 PUMP # ################################					
# 02 TURBINE * * * * * * * * * * * * * * * * * * *	# 02 PUMP # ################################					
# 02 TURBINE * * * * * * * * * * * * * * * * * * *	# 02 PUMP # ################################					
# 02 TURBINE * * * * * * * * * * * * * * * * * * *	# 02 PUMP # ################################					

TABLE 19. — DUAL-EXPANDER ENGINE — 7500 LBF THRUST (COPPER TUBE CHAMBER)

	ENGI	ΝE	PE	υFO	RM	HC	E P	A.R	AM	E١	EF	S			
•••			• • • •	•••	• * 1	•••	***	••	••	•	• • •	•	••	••	

CHAMBER PRESSURE	1371.2
VAC ENGINE THRUST	7500.
TOTAL ENGINE FLON RATE	15.63
DEL. VAC. ISP	479.9
THROAT AREA	2.67
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	58.32
ENGINE MIXTURE RATIO	6.00
ETA C.	0.993
CHAMBER COOLANT DP	429.
CHAMBER COOLANT DT	490.
NOZZLE COOLANT DP	186.
NOZZLE COOLANT DT	564.
CHAMBER Q (HYDROGEN COOLED)	4196.
NOZZLE Q (OXYGEN COOLED)	2574.

	FUEL	SYSTEM CO	ADITIONS .		
STATION B.P. INLET B.P. EXIT PUMP INLET IST STAGE EXIT PUMP EXIT COOLANT INLET COOLANT EXIT TBY INLET TBY EXIT	PRESS	TEMP	FLON	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	2.24	-107.5	4.37
B.P. EXIT	100.8	38.5	2.24	-103.0	4.39
PUMP INLET	100.8	38.5	2.24	-103.0	4.39
IST STAGE EXIT	1703.5	64.3	2.24	5.9	4.33
PUMP EXIT	3256.5	88.4	2.24	111.2	4.32
COOLANT INLET	3223.9	88.7	2.24	111.2	4.31
COOLANT EXIT	2794.6	578.3	2.24	1988.1	0.82
TBV INLET	2766.7	578.5	0.11	1988.1	0.81
TBV INLE! TBV EXIT H2 TRB INLET H2 TRB EXIT H2 TRB DIFFUSER H2 BST TRB IN H2 BST TRB OUT H2 BST TRB DIFF	1527.4	584.5	0.11	1988.1	0.46 0.81
H2 TRB INLET	2766.7	578.5	2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.23	1988.1	0.54
H2 TRB EXIT	1607.8	522.2	2.12	1762.7	0.53
H2 TRB DIFFUSER	1578.5	522.3	2.12	1762.7 1762.7	0.53
H2 BST TRB IN	1562.8	522.3	2.12	1757.9	0.52
H2 BST TRB OUT	1542.2	521.2	2.12		0.52
H2 BST TRB DIFF	1527.4	521.2	2.12	1757.9 1769.4	0.0066
H2 TANK PRESS	18.6	530.5	0.0034	1767.4	0.51
FSOV INLET	1527.4	524.4	2.23	1767.4	0.50
FSOV EXIT	1489.2	524.5	2.23	1769.4 1769.4 1769.4	0.50
CHAMBER INJ	1474.3	524.0	2.23	1/4/.4	
H2 BST THE DIFF H2 TANK PRESS FSOV INLET FSOV EXIT CHAMBER INJ CHAMBER	1371.2				
			CONDITIONS	s •	
STATION	PRESS	TEMP	FLON	ENTHALPY 61.1 61.5 61.5 79.1 79.1 271.0 271.0	DENSITY
B.P. INLET	16.0	162.7	13.4	61.1	71.17
B.P. EXIT	135.6	163.2	13.4	61.5	71.20
PUMP INLET	135.6	163.2	13.4	61.5	71.20
PUMP INLET PUMP EXIT	4864.9	188.4	13.4	79.1	71.57
COOLANT INLET	4816.2	188.6	13.4	79.1	71.50
COOLANT EXIT	4630.0	752.7	13.4	271.0 271.0	16.91
OTBV INLET	4630.0	752.7	0.6	271.0	
OTBV IMLE: OTBV EXIT O2 TRB IMLET O2 TRB EXIT O2 TRB DIFFUSER O2 BST TRB IN O2 BST TRB OUT	2313.4	735.0	0.6	271.0	9.19
OZ TRB INLET	4630.0	752.7	11.5	271.0	16.91
OZ TRB EXIT	2516.1	456.8	11.5	250.4	11.38
02 TRB DIFFUSER	2313.4	653.9	11.5	250.4	10.54
OZ BST TRB IN	4630.0	752.7	1.3	271.0	16.91
OZ BST TRB OUT	4598.2	737.4	1.3	267.0 267.0	17.22
02 BST TRB DIFF	4596.8	737.4			17.21
OBTV INLET	4596.8	737.4	1.3	267.0	17.21 9.43
OBTV EXIT	2313.4	718.8	1.3	267.0	10.36
MIXER	2313.4	663.9	13.4	253.0	0.08
DZ TANK PRESS	16.0	663.9 619.8 662.3	1.3 13.4 0.015	253.0 253.0	9.88
DCV INLET	2197.7	662.3		253.0	7.09
OCV EXIT	1538.4	652.0	13.4	253.0	7.02
CHAMBER INJ	1523.0	651.7	13.4	233.0	,
O2 BST TRB OUT O2 BST TRB DIFF OBTV INLET OBTV EXIT MIXER O2 TANK PRESS OCV INLET OCV EXIT CHAMBER INJ CHAMBER	1371.2				
		. VALVE DA	TA P		
VALVE	DELTA P	AREA	FLON	* BYPASS	
OTBV	2317.			5.00	
TBV	1239.	0.01		5.00	
FSOV	38.		2.23		
OBTV	2283.				
OCV	659.	0.25	13.39		
		INJECTOR	DATA .		
IN IECTOR	DELTA	ADFA	FLOH	VELOCITY	
INJECTOR	103.	0.47	2.23	1278.14	
FUEL	163.	0.51	2.23 13.39	426.51	
LOX	134 1	U. •1	,		

TABLE 19. — DUAL-EXPANDER ENGINE — 7500 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

			HINERY PERFORMANCE				
		*******	*************				
		RBINE *					
				H2 B00ST			
EFF ICIENCY				CIENCY			
EFF1C1ENCY	(T/S)		2	EPOMER	0.765 14.		
		75466.		D (RPH)			
MEAN DIA	(IN)	0.82	S SP		3045.		
EFF AREA	[IN2)	0.94	HEAD				
U/C (A	CTUAL)	0.553	DIA.	(IN)			
MAX TIP SPE	ED	394.	TIP :	SPEED	439.		
STAGES		1		FLOH	229.		
GAMMA		1.39		COEF	0.450		
PRESS RATIO			FLOH	COEF	0.201		
PRESS RATIO	(1/5)						
EXIT MACH N	LIMRED	14. 0.11					
SPECIFIC SP							
SPECIFIC DI							
*****	*****	•		*******			
■ H2 TU				# H2 PUMF			
******	*****	•		*******			
				STAGE ONE			
		_		********			
EFFICIENCY				0.627			
EFFICIENCY SPEED				345.			
SPEED HORSEPOHER		677		187500.	187500.		
			SS SPEED S SPEED	9304.			
EFF AREA	(IN) (IN2)	0.13		816. 53103.			
				2.22			
MAX TIP SPEI	ED	0.513 1800.	TIP SPEED	1818.			
STAGES		1	VOL. FLOW	232.			
GAMMA		1.39	HEAD COEF	0.517	0.503		
PRESS RATIO			FLOM COEF	0.098			
PRESS RATIO			DIAMETER RATIO	0.332			
EXIT MACH NI		0.16		3.00E • 06			
SPECIFIC SPE		34.00	SHAFT D!AMETER	16.00			
SPECIFIC DIA	METER	2.10					
*******				*******			
• C2 BOO				02 BOOST P			
******				*****			
EFFICIENCY				IENCY	0.764		
EFFICIENCY			HORSE	POHER	8.		
SPEED	(RPM)		SPEED	(RPH)	20189.		
MEAN DIA EFF AREA	(IN)	2.83	S SPE		3026.		
				(FT)	242.		
MAX TIP SPEE		0.553	DIA.	(IN)	1.49		
STAGES		263. 1	TIP SI VOL. I		132.		
GAMMA		1.60	HEAD (85.		
	(T/T)	1.01	FLON (0.450 0.200		
PRESS RATIO PRESS RATIO	(T/\$)	1.01					
HORSEPOHER		8.					
EXIT MACH NU		0.02					
SPECIFIC SPE		41.74					
SPECIFIC DIA	METER	1.85					
******					_		
• 02 TUR				02 PUMP			
*******				. 02 PUMP .			
EFFICIENCY	(T/T)	0.811	EFF ICI		0.693		
EFF ICIENCY				OHER	335.		
SPEED	(RPH)	156345.			156345.		
HORSEPOHER		335.	SS SPE		28091.		
	(IN)	0.82	S SPEE		1488.		
	(1N2)	0.12	HEAD		9514.		
		0.553		(IN)	1.22		
MAX TIP SPEET	D	648.	TIP SP		835.		
STAGES		1	VOL. F		84.		
GAMMA PRESS RATIO	(T/T)	1.60	HEAD C	-	0.439		
PRESS RATIO		1.84 2.06	FLOH C		0.138		
EXIT MACH NU		0.33		ER RATIO G DN	0.669		
SPECIFIC SPE	E D	85.30		G DN DIAMETER			
SPECIFIC DIA		0.96	S				

TABLE 20. — DUAL-EXPANDER ENGINE — 15,000 LBF THRUST (COPPER TUBE CHAMBER)

CHAMBER PRESSURE	1218.5
VAC ENGINE THRUST	15000.
TOTAL ENGINE FLOW RATE	31.26
DEL. VAC. ISP	479.9
THROAT AREA	6.01
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	87.46
ENGINE MIXTURE RATIO	6.00
ETA C.	0.993
CHAMBER COOLANT DP	399.
CHAMBER COOLANT DT	394.
NOZZLE COOLANT DP	212.
NOZZLE COOLANT DT	439.
CHAMBER Q (HYDROGEN COOLED)	6797.
NOZZLE Q (OXYGEN COOLED)	4210.

ENGINE STATION CONDITIONS

	ENGINE	STATION	CONDITIONS		
	*******	********			
	• FUFI	SYSTEM CO	* ZMOITION		
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	4.47	-107.5	4.37
B.P. EXIT	100.8	38.5	4.47	-103.0	4.39
PUMP INLET	100.8	38.5	4.47	-103.0	4.39
1ST STAGE EXIT	1459.8	56.9	4.47	-20.2	4.44
PUMP EXIT	2814.1	74.6	4.47	61.5	4.49
COOLANT INLET	2786.0	74.8	4.47	61.5	4.47
COOLANT EXIT	2386.6	469.3	4.47	1580.9	0.84
TBV INLET	2362.7	469.4	0.22	1580.9	0.85
TBV EXIT	1357.6	473.2	0.22	1580.9	0.51
H2 TRB INLET	2362.7	469.4	4.25	1580.9	0.85
H2 TRB EXIT	1440.9	426.3	4.25	1407.8	0.59
H2 TRB DIFFUSER	1407.1	426.4	4.25	1407.B	0.58
H2 BST TRB IN	1393.0	426.4	4.25	1407.8	0.58
H2 BST TRB OUT	1371.8	425.2	4.25	1403.0	0.57
H2 BST TRB DIFF	1357.6	425.2	4.25	1403.0	0.56
HZ TANK PRESS	18.6	431.1	0.0083	1411.9	0.0081
FSOV INLET	1357.6	427.6	4.47	1411.9	0.56
FSOV EXIT	1323.7	427.7	4.47	1411.9	0.55
CHAMBER INJ	1310.5	427.B	4.47	1411.9	0.54
CHAMBER	1218.5				
	# OXY	GEN SYSTER	CONDITION	s •	
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	26.8	61.1	71.17
B.P. EXIT	135.6	163.2	26.8	61.5	71.20
PUMP INLET	135.6	163.2	26.8	61.5	71.20
PUMP EXIT	5031.7	187.5	26.8	79.0	71.84
COOLANT INLET	4981.3	187.7	26.8	79.0	71.76
COOLANT EXIT	4769.4	626.4	26.B	235.9	21.59
OTBY INLET	4769.4	626.4	1.2	235.9	21.59

STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	26.8	61.1	71.17
B.P. EXIT	135.6	163.2	26.8	61.5	71.20
PUMP INLET	135.6	163.2	26.8	61.5	71.20
PUMP EXIT	5031.7	187.5	26.8	79.0	71.84
COOLANT INLET	4981.3	187.7	26.8	79.0	71.76
COOLANT EXIT	4769.4	626.4	26.B	235.9	21.59
	4769.4	626.4	1.2	235.9	21.59
OTBV INLET	2056.5	594.0	1.2	235.9	10.60
OTBV EXIT	4769.4	626.4	22.9	235.9	21.59
02 TRB INLET		523.0	22.9	215.4	13.93
02 TRB EXIT	2268.6			215.4	12.77
O2 TRB DIFFUSER	2056.5	518.3	22.9		
O2 BST TRB IN	4769.4	626.4	2.7	235.9	21.59
OZ BST TRB OUT	4730.5	611.B	2.7	231.9	22.07
OZ BST TRB DIFF	4728.9	611.8	2.7	231.9	22.07
OBTY INLET	4728.9	611.8	2.7	231.9	22.07
OBTV EXIT	2056.5	578.5	2.7	231.9	10.96
MIXER	2056.5	527.4	26.8	218.0	12.45
02 TANK PRESS	16.0	460.5	0.039	218.0	0.10
OCV INLET	1953.6	525.1	26.8	218.0	11.89
	1367.5	510.0	26.8	218.0	8.55
OCV EXIT				218.0	8.47
CHAMBER INJ	1353.9	509.6	26.8	210.0	0.41
CHAMBER	1218.5				

. VALVE DATA .

VALVE	DELTA P	AREA	FLOH	% BYPASS
OTBV	2713.	0.01	1.21	5.00
TBV	1005.	0.01	0.22	5.00
FSOV	34.	1.51	4.47	
OBTV	2672.	0.02	2.68	
ncv	586.	0.48	26.79	

* INJECTOR DATA *

INJECTOR	DELTA P	AREA	FLOW	VELOC1TY
FUEL	92.	0.96	4.47	1159.15
LOX	135.	1.18	26.79	366.80

TABLE 20. — DUAL-EXPANDER ENGINE — 15,000 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

			CHINERY PERFORMANCE I		

• H2 BOOS				H2 BOOST F	
******				72 BUUS! /	
EFFICIENCY (T/T)	0.740		IENCY	0.765
EFFICIENCY (T/S1	0.391		POHER	29.
	RPM)		SPEET	(RPH)	53342.
		1.16	\$ \$25		3045.
	IN2)		HEAD		2700.
MAX TIP SPEED	UALI	0.551 390.	DIA.	(IN) SPEED	1.89 439.
STAGES		1		FLOW	457.
GAJTHA		1.40	HEAD		0.450
PRESS RATIO	T/T)		FLOH	COEF	0.201
PRESS RATIO (T/S)				
HORSEPOHER		29.			
EXIT MACH NUM SPECIFIC SPEE		0.12			
SPECIFIC DIAM					
Sectific plan	C.CA	0.52			
******	****				
# H2 TURB	INE .			# H2 PUMP	• •
	# # # # #			******	
				STAGE ONE	
EFFICIENCY (T / T \	0.010	EFFICIENCY	*******	
EFFICIENCY (0.486	0.687
SPEED (524. 136363.	517. 136363.
HORSEPOHER		1041.	SS SPEED	9574.	
MEAN DIA.	(IN)		S SPEED	951.	
EFF AREA (I N2)	0.28	HEAD (FT)	44223.	43654.
U/C (ACT	UAL)	0.553	DIA. (IN)	2.79	
MAX TIP SPEED STAGES		1713.	TIP SPEED	1659.	
GANNA		1 1.40	VOL. FLOM HEAD COEF	452.	447.
PRESS RATIO (T / T / T			0.517 0.107	0.511
PRESS RATIO (T/S)	1.69			
EXIT HACH NUM	BER	0.19	BEARING DN	3.00E+06	
SPECIFIC SPEE		41.25	SHAFT DIAMETER	22.00	
SPECIFIC DIAM	ETER	1.89			
*******		****		*********	
• 02 BOOS				02 BOOST P	
******				******	
EFFICIENCY (IENCY	0.764
EEEICIENCA (HORSE	POHER	15.
	RPM)			(RPH)	
MEAN DIA	(IN) IN2)	4.01 0.14	S SPE		3026. 242.
U/C (ACT)	IAL)	0.553	DIA.	(FT) (IN)	2.11
MAX TIP SPEED		261.	TIP S	PEED	132.
STAGES		1	VOL.	FLOH	169.
GAPPHA		1.73	HEAD (0.450
PRESS RATIO (1		1.01	FLOM (COEF	0.200
HORSEPOHER	1/51	1.01			
_	BER				
SPECIFIC SPEEL)	38.01			
SPECIFIC DIAME	TER	2.04			
- 02 7100					
- 02 TURBI				02 PUMP :	
		0.830		ENCY	0.717
EFFICIENCY (1	7 S)	0.722	HORSE	OHER	667.
SPEED (F	PM) 1		SPEED	(RPH)	110421.
SPEED (R HORSEPOHER MEAN DIA (FEE AREA (I		667.	SS SPE	ED	28065.
MEAN DIA C	INI	1.16	3 34 (1450.
		0.20	HEAD	(FT) (IN)	9811.
U/C (ACTU		0.553 640.	DIA. TIP SF		1.73
STAGES		1	11P SP VOL. F		834. 148.
GAIPIA		1.73	HEAD O		0.454
PRESS RATIO (T	/T)	2.10	FLOH C		0.136
PRESS RATIO (T	/\$)	2.40	DIAMET	ER RATIO	0.669
EXIT MACH NUMB		0.35		IG DN	
SPECIFIC SPEED		81.68	SHAFT	DIAMETER	14.00
SPECIFIC DIAME	IEM	1.01			

TABLE 21. — DUAL-EXPANDER ENGINE — 25,000 LBF THRUST (COPPER TUBE CHAMBER)

ENGINE	PERFORMANCE P	ARAMETERS

CHAMBER PRESSURE	1158.7
VAC ENGINE THRUST	25000.
TOTAL ENGINE FLON RATE	52.10
DEL. VAC. ISP	479.9
THROAT AREA	10.52
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	115.76
ENGINE MIXTURE RATIO	6.00
ETA C	0.993
CHAMBER COOLANT DP	335.
CHAMBER COOLANT DT	347.
NOZZLE COOLANT DP	233.
NOZZLE COOLANT DT	373.
CHAMBER Q (HYDROGEN COOLED)	9968.
NOZZLE Q (DXYGEN COOLED)	6216.

			CONDITIONS		
		*******	*******		
	* FUEL S	SYSTEM CON	DITIONS .		
STATION	PRESS	TEI₽		ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	7.46	-107.5	4.37
B.P. EXIT	100.5	38.5	7.46	-103.0	4.39
PUMP INLET	100.5	38.5	7.46	-103.0	4.39
IST STAGE EXIT	1276.3	52.3	7.46	-37.0	4.50
PUMP EXIT	2470.4	65.7	7.46	29.0	4.59
COOLANT INLET	2445.7	66.0	7.46	29.0	4.57
COOLANT EXIT	2110.5	413.4	7.46	1365.6	0.87 0.86
TBV INLET	2089.4	413.5	0.37	1365.6	0.55
TBV EXIT	1291.4	415.7	0.37	1365.6	0.86
H2 TRB INLET	2089.4	413.5	7.09	1365.6	0.64
H2 TRB EXIT	1377.3	379.6	7.09	1226.6	0.62
H2 TRB DIFFUSER		379.7	7.09	1226.6	0.62
H2 BST TRB IN	1325.1	379.7	7.09	1226.6	0.61
H2 BST TRB OUT H2 BST TRB DIFF	1304.8	370.5	7.09	1221.8	0.60
H2 BST TRB DIFF	1291.4	378.5	7.07	1221.8 1229.0	0.0092
H2 IAM PRESS	18.6	382.2	7.09 0.0157 7.44	1229.0	0.60
FSOV INLET	1291.4	380.4	7.44	1229.0	0.59
FSOV EXIT	1259.1	380.4	7.44	1229.0	0.58
CHAMBER INJ	1246.5	380.5	7.44	1227.0	0.50
CHAMBER	1158.7				
		EN SAZIEM	CONDITIONS	ENTHALPY	DENSITY
STATION	PRESS		44.7	61.1	71.17
B.P. INLET	16.0	162.7	44.7	61.5	71.20
B.P. EXIT	135.6	163.2	44.7	61.5	71.20
PUMP INLET	135.6	163.2	44.7	77.5	71.98
PUMP EXIT	4749.6	184.9	44.7	77.5	71.91
COOLANT INLET	4782.1	185.1 558.1	44.7	216.5	23.78
COOLANT EXIT	4469.5 4469.5	558.1	2.0	216.5	23.78
OTBV INLET		519.9	2.0	216.5	12.07
OTBY EXIT	1955.0	558.1	38.2	216.5	23.78
02 TRB INLET	4469.5	460.9	38.2	197.7	16.13
O2 TRB EXIT	2356.0 1955.0	455.3	38.2	197.7	14.84
02 TRB DIFFUSER		558.1	4.5	216.5	23.78
O2 BST TRB IN O2 BST TRB OUT O2 BST TRB DIFF	4487.3	544.5	4.5	212.4	24.41
02 851 IKB 001	4430.0	544.5	4.5	212.4	24.41
OBTV INLET	4429.0	544.5	4.5	212.4	24.41
OBTV EXIT	1955.0	505.5	4.5	212.4	12.57
MIXER		462.5	44.7	200.0	14.46
MIXER 02 TANK PRESS 0CV INLET 0CV EXIT	16.0	378.4	0.080	200.0	0.13
OCV INLET	1857.3	459.7	44.7	200.0	13.82
OCV EXIT	1300.1		44.7	200.0	10.00
CHAMBER INJ	1287.1	440.9	44.7	200.0	9.91
CHAMBER	1158.7				
CHAPIDEN					
		VALVE DA	TA #		
VALVE	DELTA P	AREA	FLOH	* BYPASS	
OTBV	2514.		2.01	5.00	
TBV	798.	0.03	0.37	5.00	
FSOV	32.	2.49	7.44		
OBTV	2474.	0.04	4.47		
OCV	557.	0.76	44.65		
J					
		INJECTOR	DATA =		
INJECTOR	DELTA P	AREA	FLOH	VEFOCITA	
FUEL	88.			1093.33	
LOX	128.	1.87	44.65	330.17	
con					

TABLE 21. — DUAL-EXPANDER ENGINE — 25,000 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

		HERRY PERFORMANCE D		
		MINERT PERFORMANCE D		

# H2 BOOST TU			H2 BOOST P	

EFFICIENCY (T/T)		EFF10		0.766
EFFICIENCY (T/S)			POWER	48.
	41240.		(RPH)	41240.
MEAN DIA (IN)	1.45	S SPE	ED	3049.
EFF AREA (IN2)	2.93	HEAD	(FT)	2690.
U/C (ACTUAL)	0.534	DIA.	CIND	2.44
MAX TIP SPEED	376.	TIP S	PEED	439.
STAGES	1		FLOH	763.
GAJTHA	1.41	HEAD		0.450
PRESS RATIO (T/T)		FLOH	COEF	0.201
PRESS RATIO (T/S)	1.03			
HORSEPOHER EXIT MACH NUMBER				
SPECIFIC SPEED	0.13 150.00			
SPECIFIC DIAMETER				
STEEL TE DIMILIER	0.34			
**********			*******	**
# H2 TURBINE			* H2 PUMP	

			STAGE ONE	

EFFICIENCY (T/T)			0.738	
EFFICIENCY (T/S)		HORSEPOHER	697.	
	125000.	SPEED (RPM)	125000.	125000.
HORSEPOHER	1393.	SS SPEED	11361.	
MEAN DIA. (IN)		S SPEED	1255. 37909.	
EFF AREA (IN2)			2.89	
MAX TIP SPEED	1577.	TIP SPEED	1578.	1577.
STAGES	1	VOL. FLON	744.	730.
GAPPIA	1.41	HEAD COEF	0.490	0.489
PRESS RATIO (T/T)		FLON COEF	0.126	
PRESS RATIO (T/S)		DIAMETER RATIO	0.436	
EXIT MACH NUMBER	0.22	BEARING DN	3.00E+06	
SPECIFIC SPEED	57.47	SHAFT DIAMETER	24.00	
SPECIFIC DIAMETER	1.42			

# O2 BOOST TUP			D2 BOOST P	
EFFICIENCY (T/T)			IENCY	0.764
EFFICIENCY (T/S)			POHER	26.
SPEED (RPM)			(RPM)	11053.
MEAN DIA (IN)		S SPE		3026.
EFF AREA (IN2)	0.22	HEAD	(FT)	242.
U/C (ACTUAL)	0.553	DIA.	(IH)	2.72
MAX TIP SPEED	261.	TIP S		132.
STAGES	1	VOL.		282.
GAIPIA	1.85	HEAD		0.450
PRESS RATIO (T/T) PRESS RATIO (T/S)		FLON	CUEF	0.200
HORSEPOHER	26.			
EXIT MACH NUMBER	0.02			
SPECIFIC SPEED	38.43			
SPECIFIC DIAMETER				
*********			********	
# 02 TURBINE #	•		■ 02 PUMP	
*********			********	
EFFICIENCY (T/T)			IENCY	0.737
EFFICIENCY (T/S)			POHER	1018.
	82933.	SPEED SS SP	(RPM)	82933. 27218
HORSEPONER HEAN DIA (IN)	1018.	55 SPE		27218. 1471.
EFF AREA (IN2)		S SPE		9227.
U/C (ACTUAL)			(IN)	2.22
MAX TIP SPEED	612.	TIP S		804.
STAGES	1	VOL.		279.
GAMMA	1.85	HEAD		0.459
PRESS RATIO (T/T)	2.07	FLOH		0.137
PRESS RATIO (T/S)	2.37	DIAHE	TER RATIO	0.671
EXIT MACH NUMBER	0.35		NG DN	
SPECIFIC SPEED		SHAFT	DIAMETER	18.00
SPECIFIC DIAMETER	1.01			

TABLE 22. — DUAL-EXPANDER ENGINE — 37,500 LBF THRUST (COPPER TUBE CHAMBER)

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1075.9
VAC ENGINE THRUST	37500.
TOTAL ENGINE FLOW RATE	78.15
DEL. VAC. ISP	479.9
THROAT AREA	16.99
HOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	147.09
ENGINE MIXTURE RATIO	6.00
ETA CP	0.993
CHAMBER COOLANT DP	279.
CHAMBER COOLANT DT	317.
NOZZLE COOLANT DP	240.
NOZZLE COOLANT DT	326.
CHAMBER Q (HYDROGEN COOLED)	13588.
NOZZLE Q (OXYGEN COOLED)	8378.

ENGINE STATION CONDITIONS

	• FUEL	2A21EM CO	NDITIONS .		
STATION	PRESS	TEMP	FLOM	ENTHALPY	DENSIT
B.P. INLET	18.6	37.4	11.19	-107.5	4.37
B.P. EXIT	100.3	38.5	11.19	-103.0	4.39
PUMP INLET	100.3	38.5	11.19	-103.0	4.39
IST STAGE EXIT	1139.0	50.0	11.19	-46.5	4.51
PUMP EXIT	2200.4	61.2	11.19	10.2	4.61
COOLANT INLET	2178.4	61.4	11.19	10.2	4.59
COOLANT EXIT	1899.3	378.0	11.19	1224.6	0.84
TBV INLET	1880.3	378.0	0.56	1224.6	0.85
TBV EXIT	1197.8	379.4	0.56	1224.6	0.56
H2 TRB INLET	1880.3	378.0	10.63	1224.6	0.85
H2 TRB EXIT	1284.1	349.2	10.63	1105.4	0.65
H2 TRB DIFFUSER	1243.7	349.2	10.63	1105.4	0.63
H2 BST TRB IN	1231.5	349.2	10.63	1105.4	0.63
H2 BST TRB OUT	1211.1	348.1	10.63	1100.6	0.62
H2 BST TRB DIFF	1197.8	348.1	10.63	1100.6	0.61
H2 TANK PRESS	18.6	350.3	0.0257	1106.8	0.0100
FSOV INLET	1197.B	349.7	11.16	1106.8	0.61
FSOV EXIT	1167.9	349.7	11.16	1106.8	0.59
CHAMBER INJ	1156.2	349.7	11.16	1106.8	0.59
CHAMBER	1075.9				

	 OXY 	GEN SYSTEM	CONDITIONS	5 •	
STATION	PRESS	TEMP	FLON	ENTHALPY	DENSITY
B.P. INLET	16.D	162.7	67.1	61.l	71.17
B.P. EXIT	135.6	163.2	67.1	61.5	71.20
PUMP INLET	135.6	163.2	67.1	61.5	71.20
PUMP EXIT	4640.2	183.6	67.1	76.9	72.08
COOLANT INLET	4593.8	183.8	67.1	76.9	72.01
COOLANT EXIT	4353.9	509.5	67.1	201.7	26.47
OTBV INLET	4353.9	509.5	3.0	201.7	26.47
OTBV EXIT	1815.9	464.2	3.0	201.7	13.30
02 TRB INLET	4353.9	509.5	57.4	201.7	26.47
02 TRB EXIT	2016.1	416.3	57.4	183.6	18.20
02 TRB DIFFUSER	1815.9	409.8	57.4	183.6	16.70
02 BST TRB IN	4353.9	509.5	6.7	201.7	26.47
O2 BST TRB DUT	4312.6	496.8	6.7	197.6	27.23
02 BST TRB DIFF	4310.9	496.8	6.7	197.6	27.22
OBTY INLET	4510.9	496.8	6.7	197.6	27.22
OBTY EXIT	1815.9	450.9	6.7	197.6	13.93
MIXER	1815.9	415.8	67.0	185.9	16.19
OZ TANK PRESS	16.0	313.7	0.144	185.9	0.15
OCY INLET	1725.1	412.6	67.0	185.9	15.49
OCV EXIT	1207.6	391.5	67.0	185.9	11.27
CHAMBER INJ	1195.5	390.9	67.0	185.9	11.17
CHAMBER	1075.9				

VALVE DATA

VALVE OTBV	DELTA P 2538.	AREA 0.03	FLOH 3.02	% BYPASS 5.00
TBV	683.	8.04	0.56	5.00
FSOV	30.	3.86	11.16	
OBTV	2495.	0.06	6.71	
OCV	518.	1.12	66.98	

. INJECTOR DATA .

INJECTOR	DELTA P	AREA	FLOM	VELOCITY
FUEL	80.	2.46	11.16	1034.90
LOX	120.	2.74	66.98	300.13

TABLE 22. — DUAL-EXPANDER ENGINE — 37,500 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

		TURBOMAC	HINERY PERFORMANCE	DATA =	
		*******	**************	*****	
		******		********	
		RBINE *		H2 B00\$T	
EFF1C1ENCY				CIENCY	
EFF1C1ENCY				EPOHER	0.766 71.
SPEED	(RPM)	33632.		D (RPM)	
MEAN DIA	(IN)		\$ 59		3051.
EFF AREA	(IN2)		HEAD		
U/C (/ MAX TIP SPE	ACTUAL)	0.530 373.	DIA.		
STAGES	LED	3/3.		SPEED FLOH	438.
GAMMA		1.37		COEF	1144. 0.450
PRESS RATIO		1.02		COEF	0.201
PRESS RATIO		1.03			
HORSEPOHER		71.			
SPECIFIC SP		0.13 150.00			
SPECIFIC DI					
****				******	***
* H2 TU				# H2 PUM	
		•		******	
				STAGE ON	
EFFICIENCY	(1/1)	0.884	EFFICIENCY	0.760	
EFFICIENCY	(T/S)	0.799		895.	898.
SPEED			SPEED (RPH)	107143.	107143.
HORSEPOHER		1793.	SS SPEED	11948.	
MEAN DIA. EFF AREA	(IN) (IN2)		S SPEED	1446.	
		0.553	HEAD (FT) DIA. (IN)	33431. 3.22	
MAX TIP SPE	ED	1488.	TIP SPEED	1508.	
STAGES		1	VOL. FLOM	1113.	1090.
GAMMA		1.37	HEAD COEF	0.473	
PRESS RATIO			FLON COEF	0.136	
EXIT MACH N		1.53 0.23	DIAMETER RATIO BEARING IN		
SPECIFIC SPE		67.54	SHAFT DIAMETER	3.00E+04 28.00	
SPECIFIC DIA		1.23		20.00	

* 02 BOO				02 BOOST P	
****				02 DOG: P	
EFFICIENCY				IENCY	0.764
EFFICIENCY				POHER	39.
SPEED MEAN DIA	(RPM)	9023.		(RPM)	9023.
	(IN2)	6.34 0.31	S SPEI HEAD		3026.
	TUAL)		DIA.	(FT) (IN)	242. 3.34
MAX TIP SPEE	D	260.	TIP SI		132.
STAGES		1	VOL. I		423.
GANMA PRESS RATIO	(7/7)	1.95	HEAD (0.450
PRESS RATIO			FLOH (JUEP	B.200
HORSEPOHER		39.			
EXIT MACH NU SPECIFIC SPE	MBER	0.02			
SPECIFIC DIA	mt IER	2.12			
*****	*****			********	
# 02 TUR				02 PUHP	
				*******	•
EFFICIENCY EFFICIENCY	(T/T)	0.887	EFFICI		0.751
	(RPH)		HORSEP	OHER	1463.
HORSEPOHER		1463.	27 CDE	(RPM) FD	66685. 26810.
MEAN DIA .	(IN)	1.80	S SPEE	ED D	1476.
EFF AREA	(IN2)	0.48		(FT) (IN)	8996.
U/C (AC					2.71
MAX TIP SPEEL STAGES	D	598.	TIP SP	EED	790.
STAGES GAMMA		1 1.95	VOL. F		418.
PRESS RATIO	(T/T)	2.16	HEAD C FLOH C		0.464 0.138
PRESS RATIO	(T/S)	2.49		ER RATIO	0.138
EXIT MACH NUM		0.36	BEARIN	G DN	
SPECIFIC SPEE		83.50	SWFT	DIAMETER	22.00
SPECIFIC DIAM	TEICH	1.02			

TABLE 23. — DUAL-EXPANDER ENGINE — 50,000 LBF THRUST (COPPER TUBE CHAMBER)

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1042.6
VAC ENGINE THRUST	50000.
TOTAL ENGINE FLON RATE	104.20
DEL. VAC. ISP	479.8
THROAT AREA	23.37
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	172.52
ENGINE MIXTURE RATIO	6.00
ETA C#	0.993
CHAMBER COOLANT DP	243.
CHAMBER COOLANT DT	296.
NOZZLE COOLANT DP	263.
	306.
CHAMBER Q (HYDROGEN COOLED)	16868.
HOZZLE Q (DXYGEN COOLED)	10504.

ENGINE STATION CONDITIONS

	* FUEL	SYSTEM CON	OITIONS .		
	PRESS	TEMP	FLON	ENTHALPY	DENSITY
STATION	18.6	37.4	14.92	-107.5	4.37
B.P. INLET	100.8	38.5	14.92	-103.0	4.39
B.P. EXIT	100.8	38.5	14.92	-103.0	4.39
PUMP INLET	1093.9	49.2	16.92	-49.8	4.52
IST STAGE EXIT		59.6	14.92	3.8	4.62
. PUMP EXIT	2113.5	59.8	14.92	3.8	4.61
COOLANT INLET	2092.4		14.92	1134.2	0.89
COOLANT EXIT	1849.0	355.5	0.75	1134.2	0.88
TBV INLET	1830.5	355.5	0.75	1134.2	0.58
TBV EXIT	1162.0	356.6	14.18	1134.2	0.88
H2 TRB INLET	1830.5	355.5	14.18	1021.8	0.67
H2 TRB EXIT	1252.7	328.3		1021.B	0.65
H2 TRB DIFFUSER	1207.8	328.3	14.18	1021.8	0.65
HZ BST TRB IN	1195.7	328.3	14.18		0.64
H2 BST TRB OUT	1175.1	327.2	14.18	1017.0	0.63
H2 BST TRB DIFF	1162.0	327.2	14.18	1017.0	
HZ TANK PRESS	18.6	328.6	0.0364	1022.9	0.0107
FSOV INLET	1162.0	328.6	14.89	1022.9	0.63
FSOV EXIT	1133.0	328.7	14.89	1022.9	0.61
CHAMBER INJ	1121.6	328.7	14.89	1022.9	0.61
CHAMBER	1042.6				

	N DXYC	EN SYSTEM	CONDITIONS	; »	
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
	16.0	162.7	89.5	61.1	71.17
B.P. INLET	135.6	163.2	89.5	61.5	71.20
B.P. EXIT	135.6	163.2	87.5	61.5	71.20
PUMP INLET	4813.6	183.9	89.5	77.3	72.17
PUMP EXIT	4765.5	184.2	89.5	77.3	72.10
COOLANT INLET	4502.3	489.7	89.5	194.6	28.70
COOLANT EXIT		489.7	4.0	194.6	28.70
OTBV INLET	4502.3 1759.3	439.8	4.0	194.6	14.02
OTBY EXIT		489.7	76.5	194.6	28.70
02 TRB INLET	4502.3 1964.3	394.8	76.5	176.1	19.87
02 TRB EXIT		387.8	76.5	176.1	18.21
02 TRB DIFFUSER	1759.3	489.7	9.0	194.6	28.70
02 BST TRB IN	4502.3	477.3	9.0	190.5	29.58
02 BST TRB DUT	4458.1	477.3	9.0	190.5	29.57
02 BST TRB DIFF	4456.4	477.3	9.0	190.5	29.57
OSTV INLET	4456.4	427.3	9.0	190.5	14.78
OBTV EXIT	1759.3	393.8	89.3	178.4	17.59
MIXER	1759.3	279.6	0.217	178.4	0.17
02 TANK PRESS	16.0	390.5	89.3	178.4	16.85
OCV INLET	1671.4	368.2	89.3	178.4	12.33
OCV EXIT	1169.9		89.3	178.4	12.22
CHAMBER INJ	1158.2	367.6	•7.3		
CHAMBED	1042.6				

CHAMBER 1042.6 * VALVE DATA * VALVE DELTA P AREA FLOM % BYPASS OTBV 2743. 0.03 4.03 5.00 TBV 668. 0.06 0.75 5.00 FSOV 29. 5.14 14.89 OBTV 2697. 0.07 8.95 OCV 501. 1.45 89.31 ** INJECTOR DATA **

INJECTOR	DELTA P	AREA	FLON	VELOCITY
FUEL	79.	3.26	14.89	1012.37
OX	116.	3.56	89.31	282.09

TABLE 23. — DUAL-EXPANDER ENGINE — 50,000 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

			********	* # # #
# H2 BOOST TU			H2 800ST PU	MP #
***********			********	3 5 E N
EFFICIENCY (T/T)	0.849	EFF I	CIENCY	0.765
EFFICIENCY (T/S)	0.458		EPOHER	96.
	29203.		D (RPH)	29203.
MEAN DIA (IN)	2.02		EED	3046.
EFF AREA (IN2)		HEAD		2700.
U/C (ACTUAL)		DIA.		3.45
MAX TIP SPEED	370.		SPEED	439. 1526.
STAGES	1		FLON	0.450
GAMMA	1.40 1.02		COEF	0.201
PRESS RATIO (T/T) PRESS RATIO (T/S)		7.00	· COCI	
HORSEPOHER	96.			
EXIT MACH NUMBER				
SPECIFIC SPEED				
SPECIFIC DIAMETER				
*********	•		********	
* H2 TURBINE	•		H2 PUMP	
**********	•		*******	
			STAGE ONE	
			0.771	
EFFICIENCY (T/T)		EFFICIENCY	1123.	1131.
EFFICIENCY (T/S)	0.796	HORSEPOHER SPEED (RPM)	100000.	100000.
SPEED (RPM)	2254.	SS SPEED (RPH)	12825.	
HORSEPOMER MEAN DIA. (IN)		S SPEED	1612.	1588.
EFF AREA (IN2)			31936.	32103.
	0.553	DIA. (IN)	3.44	3.44
MAX TIP SPEED	1464.	TIP SPEED	1501.	1501.
STAGES	1	VOL. FLOH	1483.	1450.
GAMMA	1.40		0.456	0.458
PRESS RATIO (T/T)	1.46	FLOH COEF	0.144	
PRESS RATIO (T/S)		DIAMETER RATIO	0.505	
EXIT MACH NUMBER		BEARING DN	3.00E+06	
SPECIFIC SPEED	74.45	SHAFT DIAMETER	R 30.00	
SPECIFIC DIAMETER	1.13			

02 BOOST TO			02 BOOST PI	
* 02 80031 10				
EFFICIENCY (T/T)		EFF	ICIENCY	0.764
EFFICIENCY (T/S)			SEPONER	52.
SPEED (RPM)		SPE	ED (RPM)	7013.
MEAN DIA (IN)	7.32		PEED	3026.
EFF AREA (1N2)		HEA	D (FT)	242.
U/C (ACTUAL)		DIA		3.85 132.
MAX TIP SPEED	260.		SPEED	564.
STAGES	1		. FLON D COEF	0.450
GAMMA PRESS RATIO (T/T)	1.98		H COEF	0.200
PRESS RATIO (T/S		,,,,		-
HORSEPONER	52.			
EXIT MACH NUMBER				
SPECIFIC SPEED	36.25			
SPECIFIC DIAMETER	2.19			
				_
**********			********	
# 02 TURBINE			* OZ PUMP	
**********			ICIENCY	0.758
EFFICIENCY (T/T			SEPOHER	2003.
EFFICIENCY (T/S			ED (RPM)	58298.
SPEED (RPM HORSEPOHER) 58298. 2003.		SPEED	27067.
MEAN DIA (IN			PEED	1449.
EFF AREA (IN2		HEA		9330.
	0.553	DIA		3.14
MAX TIP SPEED	603.	TIP	SPEED	799.
STAGES	1	-	. FLOH	557.
GAMMA	1.98		D COEF	0.470
PRESS RATIO (T/T			H COEF	0.136
PRESS RATIO (T/S			METER RATIO	0.671
EXIT MACH NUMBER			RING DN	1.40E+06 24.00
SPECIFIC SPEED		SHA	FT DIAMETER	24.00
SPECIFIC DIAMETE	R 1.04			

TABLE 24. — FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR - 7500 LBF THRUST (COPPER TUBE CHAMBER)

ENGINE	PERFORMANCE	PARAMETERS

CHAMBER PRESSURE	1941.3
VAC ENGINE THRUST	7500.
TOTAL ENGINE FLON RATE	15.62
DEL. VAC. ISP	480.1
THROAT AREA	1.89
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	49.07
ENGINE MIXTURE RATIO	6.00
ETA C#	0.993
CHAMBER COOLANT DP	1386.
CHAMBER COOLANT DT	796.
NOZZLE/CHAMBER Q	6383.

ENGINE STATION CONDITIONS						
	• FUEL	SYSTEM CO	NDITIONS .			
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY	
B.P. INLET	18.6	37.4	2.23	-107.5	4.37	
B.P. EXIT	100.6	38.5	2.23	-103.0	4.39	
PUMP INLET	100.6	38.5	2.23	-103.0	4.39	
IST STAGE EXIT	2202.9	78.4	2.23	58.1	4.15	
2ND STAGE EXIT	4183.0	114.8	2.23	210.1	4.11	
PUMP EXIT	6085.6	147.1	2.23	354.6	4.15	
COLD REGEN IN	6024.8	147.6	2.23	354.6	4.13	
COLD REGEN EX	5964.5	369.0	2.23	1247.9	2.24	
COOLANT INLET	5964.5	369.0	2.23	1247.9	2.24	
COOLANT EXIT	4578.7	1165.3	2.23	4105.7	0.67	
TBV INLET	4532.9	1165.6	0.11	4105.7	0.67	
TBV EXIT	2241.0	1182.1	0.11	4105.7	0.34	
02 TRB INLET	4552.9	1165.6	2.12	4105.7	0.67	
OZ TRB EXIT	4280.2	1148.1	2.12	4035.8	0.63	
H2 TRB INLET	4200.2	1148.1	2.12	4035.8	0.63	
H2 TRB EXIT	2361.2	1923.6	2.12	3553.8	0.41	
H2 TRB DIFFUSER	2335.7	1023.8	2.12	3553.8	0.41	
H2 BST TRB IN	2312.4	1023.8	2.12	3553.8	0.41	
H2 BST TRB OUT	2298.6	1022.7	2.32	3549.0	0.40	
H2 BST TRB DIFF	2283.7	1022.8	2.12	3549.0	0.40	
O2 BST TRB IN	2260.8	1023.6	2.12	3549.0	0.39	
O2 BST TRB OUT	2253.6	1022.3	2.12	3546.5	0.39	
O2 BST TRB DIFF	2252.2	1022.3	2.12	3546.5	0.39	
H2 TANK PRESS	18.6	1044.2	0.0017	3574.4	0.0033	
GOX HEAT EXCH IN		1030.4	2.23	3574.4	0.39	
GOX HEAT EXCH DUT	2229.8	1030.1	2.23	3573.1	0.39	
HOT REGEN IN	2229.8	1030.1	2.23	3573.1	0.39	
HOT REGEN EX	2162.9	775.9	2.23	2679.1	0.49	
FSOV INLET	2162.9	775.9	2.23	2679.1	0.49	
FSOV EXIT	2108.8	776.2	2.23	2679.1	0.48	
CHAMBER INJ	2086.8	776.4	2.23	2679.1	0.47	
CHAMBER	1941.3					
	* DXY	GEN SYSTEM	CONDITIONS	s •		
STATION	PRESS	TEMP	FLOW	ENTHALPY	DENSITY	
B.P. INLET	16.8	162.7	13.4	61.1	71.17	
B.P. EXIT	135.6	163.2	13.4	61.5	71.20	
PUMP INLET	135.6	163.2	13.4	61.5	71.20	
PUMP EXIT	3143.9	178.8	13.4	72.5	71.53	
OZ TANK PRESS	16.0	400.0	0.023	204.7	0.12	
OCV INLET	3112.5	179.0	13.4	72.5	71.48	
OCV EXIT	2178.7	182.6	13.4	72.5	70.04	
CHAMBER INJ	2135.4	182.8	13.4	72.5	69.97	
CHAMBER	1941.3					
* VALVE DATA *						
VALVE	DELTA P	AREA	FLON	* BYPASS		
TBV	2292.	0.01	0.11	5.00		
FSOV	54.	0.64	2.23	3.00		
ocv	934.	0.08	13.39			
THE ISCTOR		INJECTOR I		UEL OCTTV		
INJECTOR	DELTA P	AREA	FLDM	VELOC1TY		
FUEL	146.	0.44	2.23	1558.24		
LDX	216.	0.17	13.39	160.32		

TABLE 24. — FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR — 7500 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

•			(00111
PPEREASERES	*****************		
***************************************	MERY PERFORMANCE DATA &		

# H2 BOOST TURBINE #	# H2 BOOS	T PUPP +	
**************	*******	*******	
EFFICIENCY (1/1) 0.789 EFFICIENCY (1/5) 0.322	EFF1C1DICY HORSEPOILER	9.766	
SPEED (RPH) 75396.	HORSEPONER SPEED (RPH	14. 3 75394.	
MEAH DIA (IN) 0.81 ETF AREA (IN2) 1.32	\$ SPEED	3848.	
	HEAD (FT Dia. (IH) 2693.) 1.53	
MAX TIP SPEED 404. STAGES 1	TIP SPEED VOL. FLON	439.	
GAMMA 1.35 PRESS RATIO (T/T) 1.01 PRESS RATIO (T/S) 1.01	HEAD COST	228. 0.450	
PRESS RATIO (1/3) 1.01	FLON COEF	4.201	
HORSEPOWER 12			
SPECIFIC SPEED 150.00			
SPECIFIC DIAMETER 0.48			

* H2 TURBINE *	* H2 PU		

	******	ME STAGE THO	*********
EFFICIENCY (T/T) 0.797 EFFICIENCY (T/S) 0.779	HORSEPONER 500	3 8.583 . 481	0.589
SPEED (RPH) 187500.	SPEED (RPN) 187508	3 8.583 - 481. - 187500.	457. 187508.
HORSEPOMER 1447, MEAN DIA. (IN) 1.77 EFF AREA (IN2) 0.12	SPEED (RPN) 187508 SS SPEED 9319 S SPEED 664	. 48 7,	786
	HEAD (FT) 71821.	69071.	64271.
HAN TIP SPEED 1565.	DIA. (IN) 2.59 TIP SPEED 2091.	2.55	2092.
U/C (ACTUAL) 0.511 MAN TIP SPEED 1545. STAGES 3 GAMMA 1.35	VOL. FLON 242. HEAD COEF 8.526 FLON COEF 8.087		241. 0.407
**************************************	FLOW COSF 8.087)	V.447
EXIT MACH HUMBER 0.13 SPECIFIC SPEED 49.66	DIAMETER RATIO 9.286 BEARING DH 3.86E+06		
SPECIFIC SPEED 49.66 SPECIFIC DIAMETER 1.46	SHAFT DIMETER 16.00		
***************	********	*****	
* 02 BOOST TURBING H	* 02 BOOST		
EFFICIENCY (T/T) 0.800 EFFICIENCY (T/S) 0.633	EFF1C1ENCY HORSEPONER	0.764 0.	
SPEED (RPH) 20184.	SPEED (RPH)	20104.	
	3 SPEED HEAD (FT)	3826. 242.	
MVC (ACTUAL) 8.553 MAX TIP SPEED 243.	HEAD (FT) DIA, (IN) TIP SPEED	1.49	
STAGES 1	VOL. FLON	132. 85.	
PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.00	HEAD COEF FLOH COEF	0.450 0.206	
NORSEPONER #			
EXIT MACH NUMBER 0.03 SPECIFIC SPEED 100.41 SPECIFIC DIAMETER 0.76			
SPECIFIC DIAMETER 0.76			
* 02 TURBINE *	*******		
**********	P 02 PUMP		
EFFICIENCY (T/T) 0.808	EFF IC LENCY	0.765	
EFFICIENCY (1/5) 0.749 SPEED (RPH) 132977.	HORSEPONER	210.	
HERSERGHER 110	SPEED (RPH) SS SPEED S SPEED	132977. 23899.	
MEAN DIA (IN) 1.77 EFF AREA (IN2) 0.21 U/C (ACTUAL) 8.549		1777.	
U/C (ACTUAL) 8.549	HEAD (FT) DIA. (1H)	6055. 1.19	
STAGES 1	TIP SPEED VOL. FLOW	689, 84.	
GAPPA 1.35 PRESS RATIO (T/T) 1.08	HEAD COEF	0.411	
	FLON COEF DIAMETER RATIO	0.152 0.679	
EXIT MACH HUMBER 0.09 SPECIFIC SPEED 52.85		1.60E-06	
SPECIFIC DIMETER 1.48	and blackly	12.00	
REGENERATOR DATA			
COLD SIDE HOT SIDE			
DELT 221.44 -254.15			
AREA 0.16 0.65 FLON 2.23 2.23			
EFFECTIVENESS 0.29			
MTU 0.41 CRATIO 0.87			
CHIN 7.85			
REGEN 0 1995.14			

TABLE 25. — FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR — 15,000 LBF THRUST (COPPER TUBE CHAMBER)

ENGINE	PERFORMANCE	PARAMETERS

CHAMBER PRESSURE	1844.7
VAC ENGINE THRUST	15000.
TOTAL ENGINE FLON RATE	31.25
DEL. VAC. ISP	480.1
THROAT AREA	3.98
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	71.18
ENGINE MIXTURE RATIO	6.00
ETA CO	0.993
CHAMBER COOLANT DP	901.
CHAMBER COOLANT DT	599.
MOZZI E CHANBER O	9975.

BREEBERSSEESARSSEESARSEESARSEESEESEESEESEESEESEESEESEESEESEESEESEE					
	* FUEL	SYSTEM CO	# ZMOITIONS #		
STATION	PRESS		FLOH	ENTHALPY	
B.P. INLET	18.6	37.4	4.47	-107.5	4.37
D D EVIT	100.8	38.5	4.47	-103.0	4.39
PUMP INLET	100.8	38.5	4.47	-103.0	4.39
IST STAGE EXIT	2021.3	68.9	4.47	26.5	4.33
2ND STAGE EXIT	3897.6	97.5	4.47	152.4	4.35
PUMP EXIT	5744.8	124.4	4.47	274.9	4.40 4.38
COLD REGEN IN	5687.3 5630.4 5630.4	124.8	4.47	274.9	2.60
COLD REGEN EX	5630.4	288.0 288.0 887.5	4.47	902.1 902.1	2.60
	5630.4	288.0	4.47	3134.4	0.89
	4729.4 4682.1	887.8	0.22	3134.4	0.88
	2128.1	905.0	0.22	3134.4	0.42
			4.24	3134.4	0.88
OZ TRB EXIT	4682.1 4278.6	887.8 872.5 872.5	4.24	3070.6	0.82
H2 TRB INLET	4278.6	872.5	4.24	3076.6	0.82
	2258.7	773.5	4.24	2672.8	0.51
H2 TRB DIFFUSER	2226.4	773.7	4.24	2672.8	0.51
H2 BST TRB IN	2204.1	773.7	4.24	2672.8	0.51
H2 BST TRB OUT H2 BST TRB DIFF	2185.4	772.6	4.24	2668.0	0.50
H2 BST TRB DIFF	2170.8	772.7	4.24	2668.0	0.50
	2149.1	772.8	4.24	2668.0	0.49
D2 BST TRB OUT	2140.3	772.2	4.24	2665.4	0.49
02 BST TRB DIFF	2138.8	772.2	4.24	2665.4	0.0044
HZ TANK PRESS	18.6		0.0045	2688.9 2688.9	0.48
GOX HEAT EXCH IN	2128.1	778.9 778.6	4.46	2687.5	0.48
GOX HEAT EXCH OUT	2117.5	778.6	4.46	2687.5	0.48
	2117.5 2054.0	601.9	4.46	2059.7	0.60
	2054.0	601.9	4.46	2059.7	0.60
FSOV INLET	2002.6	602.1	4.46	2059.7	0.58
FSOV EXIT CHAMBER INJ	1982.7	602.2	4.46		0.58
CHAMBER	1844.7				
G P D L .	•				
	* OXYY	EN SYSTEM	CONDITION	S	DC1401714
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY 71.17
B.P. INLET	16.0	162.7	Z6.8	61.1	71.20
B.P. EXIT	135.6	163.2	26.8	61.5	71.20
PUMP INLET	135.6	163.2	26.8 26.8	71.6	71.67
PUMP EXIT OZ TANK PRESS	2987.5	177.0 400.0	0.045	204.7	0.12
OZ TANK PRESS	16.0	177.2	26.8	71.6	71.62
OCV INLET	2957.7 2070.4	180.6		71.6	70.25
OCV EXIT CHAMBER INJ	2029.2	180.8		71.6	
CHAMBER	1844.7				
CHARDER					
	1	VALVE D	ATA =		
VALVE	DELTA P	AREA	FLON	% BYPASS	
TBV	2554.	0.01	0.22	5.00	
FSOV	51.	1.18	4.46		
DCV	887.	0.16	26.78		
		INJECTOR	DATA P		
INJECTOR			FLOM	VELOCITY	
	138.			1770 61	
FUEL LOX	205.	0.35	26.78	156.04	
LUA	2.53.				

TABLE 25. — FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR — 15,000 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

	INERY PERFORMANCE DA			
********		****		
*************		********		
H2 BOOST TURBINE #		2 BOOST PL		
EFFICIENCY (T/T) 0.736 EFFICIENCY (T/S) 0.359	HORSE	ENCY OMER (RPH) D (FT) (JH) EED	29.	
SPEED (RPM) 53374.	SPEED	(8211)	53374.	
MEAN DIA (1N) 1.16 EFF AREA (1N2) 2.02	S SPEE	D (FT)	3045. 2700.	
MEAN DIA (IN) 1.16 EFF AREA (IN2) 2.02 U/C (ACTUAL) 0.553	DIA.	(1H)	1.89	
MAX TIP SPEED 397. STAGES 1	TIP SP	EED	439. 457	
GAPA 1.41	HEAD C	L.0ni 069 069	457. 0.450 0.201	
GAPPIA 1.41 PRESS RATIO (T/T) 1.01 PRESS RATIO (T/S) 1.02	FLOM C	ŒF	0.201	
HORSEPOHER 29.				
HORSEPOHER 29. EXIT MACH NUMBER 0.10 SPECIFIC SPEED 147.58				
SPECIFIC DIAMETER 0.51				

# H2 TURBINE #		- 12 PUP		
**********		**************************************		STAGE THREE
		*******	********	*********
EFFICIENCY (T/T) 0.794	EFF1C1ENCY HORSEPONET	0.631	0.635 797	0.637 774
SPEED (RPH) 136363.	SPEED (RPH)	134343.	136363.	134343.
HORSEPONER 2389.	SS SPEED	9568.	74 2	74.7
EFF AREA (IN2) 0.21	HEAD (FT)	435 8 2.	62239.	60761.
U/C (ACTUAL) 0.464	DIA. (IN)	8.27	3.27	3.27
MAX TIP SPEED 1560. STAGES 2	TIP SPEED VOL. FLOW	463.	1747. 461.	455.
EFFICIENCY (T/T) 0.794 EFFICIENCY (T/S) 0.773 SPEED (RPH) 136363. HORSEPOMER 2389. HEAN DIA. (IN) 2.46 EFF AREA (IN2) 0.21 U/C (ACTUAL) 0.464 HAX TIP SPEED 1560. STAGES 2 GAMMA 1.61 PRESS RATIO (T/T) 1.89 PRESS RATIO (T/S) 1.93 EXIT MACH NUMBER 0.14 SPECIFIC SPEED 36.41 SPECIFIC DIAMETER 1.69	HEAD COEF	0.539	0.527	0.515
PRESS RATIO (T/T) 1.89 PRESS RATIO (T/S) 1.93	FLON COEF DIAMETER RATIO	0.092 0.315		
EXIT MACH NUMBER 0.14	BEARING IN	3.00€ • 06		
SPECIFIC SPEED 38.41 SPECIFIC DIAMETER 1.69	SHAFT DIAMETER	22.00		

* D2 BOOST TURBINE #		2 BOOST PU		
EFF1C1ENCY (T/T) 0.824 EFF1C1ENCY (T/S) 0.674	EF ICII	ENCY OMER (SPH)	8.764	
SPEED (RPH) 14272.	SPEED	(RPH)	14272.	
SPEED (RPH) 14272. MEAN DIA (IH) 3.18 EFF AREA (IM2) 2.97	S SPEE	D (87)	3826. 242.	
U/C (ACTUAL) 0.553	DIA.	(FT) (TH)	2.11	
MAX TIP SPEED 237. STAGES 1	TIP SPI	EEB)	2.11 132. 169.	
STAGES 1 GAMMA 1.41	YOL, FI HEAD CI FLON CI	OEF	0.450	
PRESS RATIO (T/T) 1.00	PLOM C	ŒF	0.200	
GAMMA 1.41 PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01 HORSEPOMER 15.				
HORSEPOHER 15. EXIT MACH NUMBER 8.03 SPECIFIC SPEED 101.42				
SPECIFIC DIAMETER 0.82				
		02 PUP +		
OZ TURBINE P				
EFFICIENCY (T/T) 0 800	pprici	BICY	0.729	
EFFICIENCY (T/T) 0.820 EFFICIENCY (T/S) 0.767	HORSEM	ENCY ENER (RPH)	578 3 .	
SPEED (RPM) 91028.	SPEED	(RPH) ED	91 020. 23136.	
HORSEPOHER 383. HEAN DIA (IN) 2.46	S SPEEI	D	1792.	
EFF AREA (1H2) 0.33	HEAD	(FT) (IN)	5729.	
U/C (ACTUAL) 0.547 MAX TIP SPEED 1043.	DIA. Tip SPI		1.67 663.	
STAGES 1	VOL. FL	.CM	148.	
GAPPIA 1.41 PRESS RATIO (T/T) 1.09	HEAD CI FLON CI		0.420 0.153	
PRESS BATTO (T/S) 1.16	DIAMETT	ER RATIO	0.686	
EXIT MACH NUMBER 0.09 SPECIFIC SPEED 48.17		S DN DIAMETER	1.46E+06 16.00	
SPECIFIC DIAMETER 1.63				
REGENERATOR				
COLD SIDE HOT	SIDE			
	63.52 76.69			
AREA 0.30	1.19			
FLON 4.47 EFFECTIVENESS 0.27	4.46			
NTU 0.38				
CRATIO 0.92 CHIN 15.86				
REGEN Q 2802.44				

TABLE 26. — FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR — 25,000 LBF THRUST (COPPER TUBE CHAMBER)

ENGINE	PERFORMANCE	PARAMETERS
*********	*********	***********

CHAMBER PRESSURE	1786.4
VAC ENGINE THRUST	25000.
TOTAL ENGINE FLON RATE	52.08
DEL. VAC. ISP	480.0
THROAT AREA	6.85
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	93.38
ENGINE HIXTURE RATIO	6.00
ETA C*	0.993
CHAMBER COOLANT DP	831.
CHAMBER COOLANT DT	480.
NOZZLE/CHAMBER Q	13641.

计自由 化甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基					
	e FIET	SYSTEM CON	nitions =		
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	7.45	-107.5	4.37
B.P. EXIT	101.2	38.5	7.45	-103.0	4.39
PUMP INLET	101.2	38.5	7.45	-103.0	4.39
	1817.1	60.7	7.45	-1.1	4.48
	3543.3	81.9	7.45	100.0	4.56
PUMP EXIT	5281.9	102.4	7.45	200.0	4.64
COLD REGEN IN	5229.1	102.9	7.45	200.0	4.62
COLD REGEN EX	5176.8	253.0	7.45	745.0	2.71 2.71
COOLANT INLET	5176.8	253.0	7.45	745.0	0.98
COOLANT EXIT	4346.0	733.1	7.45	2576.3 2576.3	0.97
TBV INLET	4302.6	733.4	0.37 0.37	2576.3	0.49
TBV EXIT	2062.2	747.5 733.4	7.08	2576.3	0.97
02 TRB INLET	4302.6	719.1	7.08	2516.2	0.91
02 TRB EXIT	3897.1 3897.1	719.1	7.08	2516.2	0.91
	2196.4	639.3	7.08	2197.4	0.60
H2 TRB EXIT	2159.5	639.5	7.08	2197.4	0.59
	2137.9	639.5	7.08	2197.4	0.59
	2118.2	638.4	7.08	2192.6	0.58
	2104.8	638.4	7.08	2192.6	0.58
OZ BST TRB IN	2083.8	638.6	7.08	2192.6	0.57
		637.9	7.08	2190.0	0.57
02 BST TRB OUT 02 BST TRB DIFF	2072.6	637.9	7.08	2190.0	0.57
H2 TANK PRESS	18.6	654.5	0.0091	2209.4	0.0053
GOX HEAT EXCH IN	2062.2	643.4	7.44	2209.4	0.56
GOX HEAT EXCH OUT		643.1	7.44	2208.0	0.56
HOT REGEN IN	2051.9	643.1	7.44	2208.0	0.56
HOT REGEN EX	1990.4	493.1	7.44	1662.4	0.70 0.70
FSOV INLET	1990.4	493.1	7.44	1662.4 1662.4	0.48
FSOV EXIT	1940.6	493.3	7.44	1662.4	0.68
CHAMBER INJ	1921.0	493.3	7.44	1002.4	*
CHAMBER	1786.4				
		GEN SYSTEM			DENSITY
STATION	PRESS		FLOH 44.7	61.1	71.17
B.P. INLET	16.0	162.7	44.7	61.5	71.20
B.P. EXIT	135.6	163.2 163.2	44.7	61.5	71.20
PUMP INLET	135.6 2893.0		44.7	71.0	71.75
PUMP EXIT 02 TANK PRESS 0CV INLET	2893.0	400.0	0.076	204.7	0.12
DZ TANK PRESS	2044 1	176.1	44.6	71.0	71.70
OCV INLET	2004.9	179.4	44.6	71.0	70.37
OCV EXIT	1965.0	179.6	44.6	71.0	70.31
CHAMBER INS	1786.4	••••			
CHANDEN					
	DELTA P	P VALVE DA	TLOH	% BYPASS	
VALVE	2240.		0.37	5.00	
TBV	50.		7.44		
FSDV OCV	859.				
UC V	U 2/.				
			DATA B		
		INJECTOR	DATA =	VELOCITY	
INJECTOR	DELTA P		FLOH 7.44	1266.91	
FUEL	135.			153.42	
FOX	198.	0.60	****	.55.46	

TABLE 26. — FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR — 25,000 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

* TURBONACHINE	ERV PERFORMANCE DATA =	
# H2 BOOST TURBINE #	***************************************	
**************************************	P H2 BOOST PURP +	
EFFICIENCY (T/T) 0.823 EFFICIENCY (T/S) 0.431	EFFICIENCY 0.745 HORSEPONER 48.	
SPEED (RPH) 41428.	SPEED (RPH) 41428.	
MEAN DIA (IN) 1.44 EFF AREA (IN2) 3.02	S SPEED 3041.	
U/C (ACTUAL) 0.538	HEAD (FT) 2713.	
MAX TIP SPEED 377.	DIA. (IN) 2.43 TIP SPEED 440.	
STAGES	VOL. FLON 762.	
CAMMA 1.44 PRESS RATIO (T/T) 1.01 PRESS RATIO (T/S) 1.02	HEAD COEF 0.450 FLOW COEF 0.208	
PRESS RATIO (T/S) 1.02	7.200 U.200	
EXIT HACH NUMBER 0.10 SPECIFIC SPEED 150.00		
SPECIFIC DIAMETER 0.52		
**********	**********	
# HZ TURBINE #	* H2 PUMP *	
4*********	*****	
	STAGE ONE STAGE THO S	
EFF1C1ENCY (T/T) 0.856 EFF1C1ENCY (T/S) 0.826	EFFICIDICY 8.700 8.699	0.699
EFF1C1ENCY (T/S) 0.826 SPEED (RPH) 125000.	EFFICIENCY 8.700 8.699 HORSEPONER 1073, 1064, SPEED (APM) 125000, 125000,	1054.
HORSEPONER 3191.	SPEED (APH) 125000. 125000. SS SPEED 11287.	125000.
HORSEPONER 3191. HEAN DIA. (IN) 2.61 EFF AREA (IN2) 0.35 HAG (ACTION) 0.505	S SPEED 945. 943.	942.
EFF AREA (1H2) 0.35	HEAD (FT) 55475. 54951.	54386.
	DIA. (IN) 3.38 3.38 TIP SPEED 1045, 1045,	3.30 1944.
STAGES 2	VOL. FLOM 746. 733.	720.
GAMMA 1,44	HEAD COEF 0.524 8.519	0.514
PRESS RATIO (T/T) 1.77 PRESS RATIO (T/S) 1.81	FLOW COEF 0.107 DIAMETER RATIO 0.373	
EXIT MACH NUMBER 0.16	BEARING DN 3.00E+06	
SPECIFIC SPEED 51.88 SPECIFIC DIAMETER 1.43	SHAFT DIAMETER 24.00	
Seem to Bracelon 1.43		
• 02 BOOST TURBINE •	• C2 BCOST PUMP •	
EFF1C1ENCY (T/T) 0.877	EFFICIENCY 8.764	
EFFICIENCY (T/\$) 0.729	HORSEPOHER 26.	
SPEED (RPH) 11055. MEAN DIA (IN) 4,11	SPEED (RPH) 11055. S SPEED 3026.	
EFF AREA (IN2) 4.35	HEAD (FT) 242. DIA. (IN) 2.72	
NAC (ACTUAL) 0.553	DIA. (IN) 2.72	
MAX TIP SPEED 234. STAGES 1	TIP SPEED 132. VOL. FLON 282.	
GAPPIA 1.44	HEAD COEF 0.450 FLOW COEF 0.200	
PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01	FLOH COEF 8.200	
HORSEPOHER 24.		
EXIT MACH HUNDER 0.03 SPECIFIC SPEED 99.31		
SPECIFIC SPEED 99.31 SPECIFIC DIAMETER 0.86		
SECURIC DINCELER 8.85		
FREEFENDORDES P 02 TURBINE 4	**************************************	
***********	**********	
EFFICIENCY (T/T) 0.854	EFFICIENCY 0.747	
EFFICIENCY (T/S) 0.794 SPEED (RPH) 69046.	HORSEPOMEN 602. SPEED (RPH) 69846.	
	33 SPEED 22656.	
MEAN DIA (IN) 2.61		
EFF AREA (IN2) 8.53 U/C (ACTUAL) 8.654	MEAD (FT) 5532. DIA. (IN) 2.14	
MAX TIP SPEED 855.	TIP SPEED 646.	
STAGES)	VOL. FLON 280.	
GAMMA 3.44 PRESS RATIO (T/T) 3.10	HEAD COEF 0.426 FLOW COEF 0.153	
BRESS SATIR (T/S) 1 11	FLOW COEF 0.153 DIAMETER RATIO 0.681	
EXIT MACH HUMBER 0.09	BEARING DN 1.38E+06	
SPECIFIC SPEED 48.09	SHAFT DIAMETER 20:00	
SPECIFIC DIAMETER 1.48		
REGENERATOR DATA		
COLD SIDE HOT SIDE		
DELP 52.29 61.56		
DELT 150.12 -150.00 AREA 0.50 1.86		
FLOM 7.45 7.44		
EFFECTIVENESS 0.28 NTU 0.40		
NTU 0.40 CRATID 1.00		
CHIN 27.04		
REGEN 9 4059.52		

TABLE 27. — FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR
— 37,500 LBF THRUST (COPPER TUBE CHAMBER)

ENGINE	PERFORMANCE	PARAMETERS
********	********	

CHAMBER PRESSURE	. 1673.2
VAC ENGINE THRUST	37500.
TOTAL ENGINE FLOH RATE	78.12
DEL. VAC. ISP	480.0
THROAT AREA	10.96
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	118.14
ENGINE MIXTURE RATIO	6.00
ETA C.	0.993
CHAMBER COOLANT DP	752.
CHAMBER COOLANT DT	403.
NOZZI E / CHAMBER O	17580.

	e FUEL	SYSTEM CON	DITIONS *		
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	11.18	-107.5	4.37
B.P. EXIT	100.8	38.5	11.18	-103.0	4.39
PUMP INLET	100.8	38.5	11.18	-103.0	4.39
	1768.9	58.6	11.18	-7.9	4.52
	3463.0	77.9	11.18	87.1	4.62
PUMP EXIT	5182.8	96.7 97.2	11.18	181.6	4.72
COLD REGEN IN	5130.9	97.2	11.18	181.4	4.70
COLD REGEN EX	5079.6	228.0	11.18	638.8	2.90
COOLANT INLET	5079.6	228.0	11.18	638.8	2.90 1.11
	4327.2	630.5	11.18	2211.8	1.11
	4283.9	630.8	0.56	2211.8 2211.8	0.53
	1930.3	644.8	0.56	2211.8	1.10
	4283.9	630.B	10.62 10.62	2156.7	1.03
	3867.8	618.4 618.4	10.62	2156.7	1.03
	3867.8	546.1	10.62	1857.1	0.66
	2072.2	546.3	10.62	1857.1	0.64
H2 TRB DIFFUSER	2026.3	546.3	10.62	1857.1	0.64
,	1984.9	545.1	10.62	1852.3	0.63
H2 BST TRB DIFF		545.2	10.62	1852.3	0.63
		545.3		1852.3	0.62
02 BST TRB IN 02 BST TRB OUT 02 BST TRB DIFF	1961.5	544.6	10.62	1849.7	0.62
OZ BST TOR DIFF	1940.0	544.6	10.62	1849.7	0.62
H2 TANK PRESS	18.6	558.1	0.0161	1867.8	0.0063
GOX HEAT EXCH IN		549.7	11.16	1867.8	0.61
GOX HEAT EXCH OUT		549.3	11.16	1866.5	0.61
		549.3	11.16	1866.5	0.61
HOT REGEN IN HOT REGEN EX	1863.0	425.3	11.16	1408.6	0.75
	1863.0	425.3	11.16	1408.6	0.75
	1816.4	425.4	11.16	1408.6	0.74
FSOV EXIT CHAMBER INJ CHAMBER	1798.4	425.5	11.16	1408.6	0.73
CHAMBER	1673.2				
	- 000	GEN SYSTEM	COMBITION	s =	
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	67.1	61.1	71.17
B.P. EXIT	135.6	163.2	67.1	61.5	71.20
PUMP INLET	135.6	163.2	67.1	61.5	71.20
	2709.7	174.B	67.1	70.2	71.77
D2 TANK PRESS			0.113	204.7	0.12
	2682.6		67.0	70.2	71.73
OCV EXIT	1877.8	177.9	67.0	70.2	70.48
	1840.5		67.0	70.2	70.42
CHAMBER	1673.2				
		= VALVE DA	TA .		
14A1 14E	DELTA P	AREA		* BYPASS	
	2354.		0.56	5.00	
TBV	47.		11.16	-	
FSOV OCV	805.				
OC 4	505.	J			
		INJECTOR	DATA -		
		AREA		VELOCITY	
	DELTA P				
FUEL.	125.		66.96	148.36	
LOX	100.	V.,L	•••••		

TABLE 27. — FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR — 37,500 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

• TURBOHACHINE	ERY PERFORMANCE DATA #
* M2 BOOST TURBING #	P H2 BOOST PUMP 4
EFFICIDICY (T/T) 8.839 EFFICIDICY (T/S) 6.456 SPEED (89H) 33742. HEAN DIA (1H) 1.77 EFF AMEA (1M2) 4.19 U/C (ACTUAL) 8.533 HAX TIP SPEED 573. STAGES 1 GAMM 1.36 PRESS RATIO (T/T) 1.01 PRESS RATIO (T/T) 1.01 PRESS RATIO (T/S) 1.02 HURSEPORER 72. EXIT MACH NUMBER 6.19 SPECIFIC SPEED 150.06 SPECIFIC DIAMETER 8.53	EFFICIENCY 0.745 HORSEPONER 72. SPEED RPH) 33742. S. SPEED 3044. HEAD (FT) 2599. DIA. (1N) 2.90 TIP SPEED 439. VOL. FLOM 1143. HEAD COEF 0.450 FLOM COEF 0.291
e M2 TURBINE =	ERRECTIONS 1 NZ PUP 0 111111111111111111111111111111111111
STAGES 2 GAMMA 1.36 PRESS RATIO (T/T) 1.87 PRESS RATIO (T/S) 1.92 EXIT MACH MUMBER 8.39	######################################
DESCRIPTION OF THE PROPERTY OF	• 02 BOOST PURP •
EFFICIENCY (T/T) 8.887 EFFICIENCY (T/S) 8.746 SPEED (RPM) 9026. HEAN DIA (IN) 5.06 EFF ANEA (INC) 6.553 NAX TIP SPEED 252. STAGES 1 GANNA 1.36 PRESS RATIO (T/T) 1.01 HORSEPOMER 39. EXIT MACH HUMBER 90.04 SPECIFIC SMEED 96.51 SPECIFIC DIAMETER 0.89	EFFICIENCY 0.764 HORSEPONER 39. SPEED (RPH) 9626. S SPEED 3826. HEAD (FT) 242. DIA. (IN) 3.34 TIP SPEED 132, VOL. FLOW 423. HEAD CODE 0.458 FLOM CODEF 8.299
+ 02 TURBINE +	липливалав п 02 РИФ о вления
EFFICIENCY (7/T) 0.800 EFFICIENCY (7/S) 0.827 SPEED (RPH) 54516. HOSSPONER 028. HEAN DIA (IN) 2.72 EFF ARA (IN) 0.550 HAX TIP SPEED 726. STAGES 2 GAMMA 1.36 PRESS RATIO (T/T) 1.11 PRESS RATIO (T/T) 1.12 EXIT MON HUMBER 6.09 SPECIFIC SPEED 76.33 SPECIFIC DIAMETER 1.09	EFFICIENCY 0.760 HORSEPOMER 020. SPEED 021910. SS SPEED 21910. SS SPEED 10333. HEAD (FT) 5162. DIA. (IN) 2.61 TIP SPEED 621. VOL. FLOM 419. HEAD CODF 0.431 FLOM CODF 0.431 FLOM CODF 0.495 DIAMETER RATIO 0.405 SMAFT DIAMETER 26.00
REGENERATOR DAYA	

TABLE 28. — FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR — 50,000 LBF THRUST (COPPER TUBE CHAMBER)

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1557.9
VAC ENGINE THRUST	50000.
TOTAL ENGINE FLON RATE	104.17
DEL. VAC. ISP	480.0
THROAT AREA	15.69
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	141.34
ENGINE MIXTURE RATIO	6.00
ETA C.	0.993
CHAMBER COOLANT DP	672.
CHAMBER COOLANT DT	358.
NOZZLE/CHAMBER Q	21099.

	* FUEL	SYSTEM CO	NDITIONS .		
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	14.91	-107.5	4.37
B.P. EXIT	100.9	38.5	14.91	-103.0	4.39
PUMP INLET	100.9	38.5	14.91	-103.0	4.39
IST STAGE EXIT	1612.6	55.5	14.91	-20.1	4.55
2ND STAGE EXIT	3160.0	71.8	14.91	63.0	4.66
PUMP EXIT	4741.5	87.7	14.91	146.2	4.77 4.75
COLD REGEN IN	4694.1	88.2	14.91	146.2 534.3	2.98
COLD REGEN EX	4647.1 4647.1	204.0 204.0	14.91	534.3	2.98
COOLANT INLET	3975.6	561.9	14.91	1949.9	1.14
COOLANT EXIT TBV INLET	3935.8	562.1	0.75	1949.9	1.13
TBV EXIT	1797.6	572.8	0.75	1949.9	0.55
OZ TRB INLET	3935.8	562.1	14.16	1949.9	1.13
02 TRB EXIT	3542.5	550.4	14.16	1899.3	1.06
HZ TRB INLET	3542.5	550.4	14.16	1899.3	1.06
HZ TRB EXIT	1937.7	486.3	14.16	1637.1	0.69
H2 TRB DIFFUSER	1891.0	486.5	14.16	1637.1	0.67
H2 BST TRB IN	1872.0	486.5	14.16	1637.1	0.67
H2 BST TRB OUT	1850.4	485.4	14.16	1632.3	0.66
H2 BST TRB DIFF	1837.4	485.4	14.16	1632.3	0.66
O2 BST TRB IN	1819.1	485.5	14.16	1632.3	0.65
02 BST TRB OUT	1808.2	484.8	14.16	1629.8	0.65
02 BST TRB DIFF	1806.7	484.8	14.16	1629.8	0.65
H2 TANK PRESS	18.6	495.7	0.0242	1645.8 1645.8	0.0071
GOX HEAT EXCH IN		489.3	14.88 14.88	1644.4	0.64
GOX HEAT EXCH OUT		488.9 488.9	14.88	1644.4	0.64
HOT REGEN IN	1788.7 1735.0	386.3	14.88	1255.6	0.78
HOT REGEN EX FSOV INLET	1735.0	386.3	14.88	1255.6	0.78
FSOV EXIT	1691.6	386.4	14.88	1255.6	0.76
CHAMBER INJ	1675.1	386.4	14.88	1255.6	0.75
CHAMBER	1557.9				
			CONDITION		NC. 10 1 TM
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY 71.17
B.P. INLET	16.0	162.7	89.4	61.1 61.5	71.20
B.P. EXIT	135.6	163.2	89.4	61.5	71.20
PUMP INLET	135.6	163.2 173.7	89.4 89.4	69.5	71.77
PUMP EXIT	2523.0 16.0	400.0	0.151	204.7	0.12
02 TANK PRESS OCV INLET	2497.8	173.8	89.3	69.5	71.73
OCV EXIT	1748.4	176.6	89.3	69.5	70.56
CHAMBER INJ	1713.6	176.8	89.3	69.5	70.51
CHAMBER	1557.9	• • • • • • • • • • • • • • • • • • • •			
OI WE IDEN					
		VALVE DA		% BYPASS	
VALVE	DELTA P	AREA	FLOM		
TBV	2138.	0.03	0.75	5.00	
FSOV	43.	3.73	14.88 89.29		
ocv	749.	0.58	07.67		
		INJECTOR			
INJECTOR	DELTA P	AREA	FLOH	VELOCITY	
FUEL	117.	2.58	14.88	1117.61	
LOX.	173.	1.27	89.29	143.07	

TABLE 28. — FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR — 50,000 LBF THRUST (COPPER TUBE CHAMBER) (CONTINUED)

	ERY PERFORMANCE DATA +	
********	*************	

* H2 BOOST TURBINE *	* H2 BOOST PL	P .
*************	***************************************	****
EFFICIENCY (T/T) 0.859 EFFICIENCY (T/S) 0.476	EFFICIENCY HORSEPOHER	0.765
SPEED (RPH) 29231.	SPEED (RPH)	96. 29251. 3045.
MEAN DIA (3H) 2.83 FFF ARFA (1H2) 5.39	S SPEED	
SPEED (RPH) 29231. MEAN DIA (2H) 2.03 EFF AREA (1M2) 5.39 U/C (ACTUAL) 0.529	HEAD (FT) DIA. (IH)	2702. 3.44
MAX TIP SPEED 369. STAGES 1 GAMMA 1.42	TIP SPEED VOL. PLON	440. 1524.
	TIP SPEED VOL. FLOH MEAD COEF FLOH COEF	0.450
PRESS RATIO (T/T) 1.81 PRESS RATIO (T/S) 1.82	PLON COEP	0.201
HORSEPOHER 96. EXIT HACH HUMBER 0.11		
SPECIFIC SPEED 150.00		
SPECIFIC DIMETER 0.53		
· H2 TURBINE ·	1 12 PUMP	
***********	*******	•
		STAGE THO STAGE THREE
EFFICIENCY (T/T) 8.876 EFFICIENCY (T/S) 8.825	EFFICIENCY 0.750 HORSEPONER 1749.	0.746 0.746 1752. 1753. 100000. 100000.
SPEED (BOWL) LANGAA	SPEED (RPH) 100000.	100000. 100000.
HORSEPOHER 5254. HEAH DIA. (IH) 2,92	\$ 97023) 1176.	1162. 1150.
EFF AREA (INZ) 0.67	HEAD (FT) 48371.	
HAX TIP SPEED 1413.	TUP SPEED 1753.	4.02 4.02 1753. 1754.
31MUL3 Z	VOL. FLON 1472, HEAD COEF 0.506	1435. 1404. 8.506 8.505
PRESS RATID (T/T) 1.83	PLDH COEF 8.121	0.500
PRESS RATIO (T/S) 1.89 EXIT MACH NUMBER 8.26	BEARING DN 3.80E+06	
EXIT MACH NUMBER 8.26 SPECIFIC SPEED 63.23 SPECIFIC DIAMETER 1.18	SWFT SIMETER 38.00	
*************	*********	••••
# 02 BOOST TURBINE #	* 02 B00ST PU	
***************	*41******	••••
EFFICIENCY (1/1) 0.896 EFFICIENCY (1/3) 0.756	EFFICIENCY HORSEPONER	0.764 51.
SPEED (RPH) 7817.	PROFES (BRM)	7817.
SPEED (RPH) 7817PEAN DIA (IN) 5.81 EFF AREA (IN2) 7.68 U/C (ACTUAL) 8.553	S SPEED HEAD (PT) DIA. (IN)	1026. 242.
U/C (ACTUAL) 8.553	DIA. (IN)	
STAGES 1	VO. 8 M	3.05 132. 544.
GAMMA 1.42 PRESS RATIO (T/T) 1.81	HEAD COEF PLON COEF	8.450 8.200
PRESS RATIO (T/S) 1.03		*****
HORSEPONER 51. EXIT MACH MARKER 0.04 SPECIFIC SPEED 95.36		
SPECIFIC SPEED 95.36 SPECIFIC DIAMETER 0.90		
*********	4000000000	
P D2 TURBINE P	• 02 PUP •	

EFFICIENCY (T/T) 0.801 EFFICIENCY (T/S) 0.826	EFF1C1ENCY HORSEPONER	0.769 1013.
SPEED (RPH) 45615.	SPEED (RPH)	45415.
	SS SPEED S SPEED	21168. 1874.
HEAN DIA (IN) 2.92 EFF AREA (IN2) 9.98 U/C (ACTUAL) 9.516	HEAD (FT) DIA. (IN)	4788. 2.99
MAX TIP SPEED 641.	TIP SPEED	596.
STAGES 2 GAMMA 1.42	VOL. FLON HEAD COEF	559. 0.434
PRESS RATIO (T/T) 1.11	FLON COEF	0.157
PRESS RATIO (T/S) 1.12 EXIT MACH MUMBER 8.89	DIAMETER RATIO BEARING DN 1	0.604 .37E+06
SPECIFIC SPEED 77.18 SPECIFIC DIAMETER 1.82	SHAFT DIANETER	30.00
S CONTRO DIFFERENT 1.86		
REGENERATUR DATA		
	•	
COLD SIDE HOT SII DELP 46.14 \$3.0	14	
DELT 115.00 -102.0 AREA 1.03 3.1		
FLON 14.91 14.8		
EFFECTIVENESS 8.29 NTU 8.42		
CRATIO 8.89		
CHIN 49.96 REGEN Q 5785.66		

TABLE 29. — FULL-EXPANDER ENGINE — 7500 LBF THRUST (COPPER GROOVED CHAMBER)

			E PARAMETER		
CHAM	BER PRESSU	RE		1750.2	
	ENGINE THR			7500.	
	L ENGINE F	LOW RATE		15.62	
	VAC. ISP			480.0	
	IAT AREA 'LE AREA RA	T10		2.10 1000.0	
	LE EXIT DI			51.67	
	NE HIXTURE			6.00	
ETA				0.993	
	BER COOLAN			731.	
	IBER COOLAN LE/CHAMBER			710. 5975.	
			CONDITIONS		

STATION	* FUEL PRESS		NDITIONS *	ENTHALPY	DENS1T
B.P. INLET	18.6	37.4	2.23	-107.5	4.37
B.P. EXIT	100.3	38.5	2.23	-103.0	4.39
PUNP INLET	100.3	38.5	2.23	-103.0	4.39 4.30
	1804.9 3447.1	66.9 93.2	2.23 2.23	15.5 129.3	4.29
2ND STAGE EXIT PUMP EXIT	5043.4	117.8	2.23	239.0	4.32
COOLANT INLET	4993.0	118.2	2.23	239.0	4.30
COOLANT EXIT	4262.4	828.3		2913.2	0.86
TBV INLET	4219.8	828.6	0.11	2913.2 2913.2	0.85 0.41
TBV EXIT 02 TRB INLET	1959.7	843.2 828.6	0.11 2.12	2913.2	0.85
OZ TRB EXIT	4219.8 3829.5	813.6	2.12	2850.5	0.80
	3829.5	813.4	2.12	2850.5	0.80
H2 TRB EXIT	2082.2	723.0	2.12	2490.3	0.51
H2 TRB DIFFUSER		723.1 723.1	2.12 2.12	2490.3 2490.3	0.50 0.50
TILL BET TOR CILL	2033.1 2015.3	722.0	2.12	2485.6	0.49
H2 BST TRB DIFF O2 BST TRB IN	1999.9	722.1	2.12	2485.6	0.49
02 BST TRB IN	1979.9	722.2	2.12	2485.6	0.49
O2 BST TRB OUT	1971.0	721.5	2.12	2483.0	0.48 0.48
02 BST TRB DIFF	1969.5 18.6	721.6 739.1	2.12 0.0024	2483.0 2504.5	0.0047
H2 TANK PRESS GOX HEAT EXCH IN		737.1	2.23	2504.5	0.48
GOX HEAT EXCH OUT		727.4	2.23	2503.2	0.48
FSOV INLET	1949.9	727.4	2.23	2503.2	0.48
FSOV EXIT	1901.1	727.7	2.23	2503.2 2503.2	0.46
CHAMBER INJ CHAMBER	1862.3 1750.2	727.9	2.23	2303.2	0.43
	* OXYO		CONDITIONS	s •	
STATION	PRESS			ENTHALPY	DENS17
B.P. INLET	16.0	162.7 163.2	13.4 13.4	61.1 61.5	71.17
B.P. EXIT PUMP INLET	135.6 135.6	163.2	13.4	61.5	71.20
PUMP EXIT	2834.5	177.2	13.4	71.4	71.50
02 TANK PRESS	16.0	400.0			0.12
	2806.2	177.3	13.4	71.4	71.46
OCV EXIT	1964.3	180.6	13.4	71.4 71.4	70.15 70.09
CHAMBER INJ CHAMBER	1925.2 1750.2	180.7	13.4	71.4	70.07
		VALVE DA	ITA #	•	
VALVE	DELTA P		FLON	% BYPASS	
TBV	2260.			5.00	
FSOV	49.	0.68	2.23		
ocv	842.	0.08	13.39		
	•	INJECTOR	DATA #		
INJECTOR	DELTA P	AREA	FLOM	VELOC1TY	
FUEL	132.	0.47	2.23	1504.14	
FOX	194.	0.18	13.39	152.10	

TABLE 29. — FULL-EXPANDER ENGINE — 7500 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

		INERY PERFORMANCE			
*********				****	
# H2 BOOST TU			H2 BOOST P		
EFFICIENCY (T/T)			********		
EFFICIENCY (T/S)		HORSE	CIENCY EPOHER	14.	
	75279.	SPEEI	(RPM)	75279.	
MEAN DIA (IN) EFF AREA (IN2)			EED	3050.	
U/C (ACTUAL)		HEAD	(FT) (IN)	2685. 1.33	
MAX TIP SPEED			SPEED	438.	
STAGES	1		FLON	228.	
GAMMA	1.44		COEF	0.450	
PRESS RATIO (T/T) PRESS RATIO (T/S)	1.02	FLUM	WEF	0.201	
HORSEPOHER	14.				
EXIT HACH NUMBER					
SPECIFIC SPEED SPECIFIC DIAMETER	146.08 0.51				
G CON TO DIMETER	v .31				
********			******	••	
# H2 TURBINE			# H2 PUMP		
	•		STAGE OME		STAGE THREE

EFFICIENCY (T/T)			0.615	0.621	0.626
EFFICIENCY (T/S)	0.787	HORSEPOHER SPEED (RPM)	375.	360.	347.
EFFICIENCY (T/S) SPEED (RPM) HORSEPOHER HEAN DIA. (IN) EFF AREA (IN2) U/C (ACTUAL)	1082.	SS SPFFD	9340.	187500.	187500.
MEAN DIA. (IN)	1.65	S SPEED		797.	813.
EFF AREA (IN2)	0.11	HEAD (FT)		797. 55094.	
U/C (ACTUAL) MAX TIP SPEED		DIA. (IN) TIP SPEED	2.29		
STAGES	3	VOL. FLOW	1874. 233.		232.
GAMMA	1.44	HEAD COEF		0.505	
PRESS RATIO (T/T) PRESS RATIO (T/S)		FLOW COEF DIAMETER RATIO	0.095		
EXIT MACH NUMBER		BEARING DN	0.322 3.00F+06		
SPECIFIC SPEED	54.79	SHAFT DIAMETER			
SPECIFIC DIAMETER	1.42				
*******	*****	**			
# 02 BOOST TUR			D2 BOOST PU		

EFFICIENCY (T/T) EFFICIENCY (T/S)		EFF1C	IENCY POMER	0.764	
SPEED (RPM)		SPEED	POHER (RPM)	8. 20183.	
MEAN DIA (IN)	2.25		E D	3026.	
EFF AREA (IN2)		HEAD	(FT)	242.	
	237.	DIA.	(IN) PEED	1.49 132.	
STAGES	1	VOL. I		85.	
GAMMA PRESS RATIO (T/T)	1.44	HEAD (0.450	
PRESS RATIO (T/T) PRESS RATIO (T/S)		FLOH (COEF	0.200	
HORSEPOHER	8.				
EXIT MACH NUMBER	0.03				
SPECIFIC SPEED SPECIFIC DIAMETER					
SPECIFIC DIAMETER	U.82				

# 02 TURBINE #			02 PUMP #		
EFFICIENCY (T/T)	0.00		ENCY	0.703	
EFFICIENCY (T/S)			DER.	188.	
SPEED (RPM)	127128.	SPEED	(RPH)		
HORSEPOHER MEAN DIA (IN)	188.	SS SPE	ŒD 'n	22848.	
MEAN DIA (IN) EFF AREA (IN2)	1.65 0.17	3 34 14		1843. 5434.	
U/C (ACTUAL)		DIA.	(FT) (IN)	1.18	
MAX TIP SPEED	981.	TIP SP	EED	653.	
STAGES	1	VOL. F		84.	
GAMMA PRESS RATIO (T/T)	1.44	HEAD O		0.410 0.155	
PRESS RATIO (T/S)			ER RATIO	0.155 0.681	
EXIT MACH NUMBER	0.09	BEAR IN	IG DN :	1.53E+06	
SPECIFIC SPEED SPECIFIC DIAMETER	48.50	SHAFT	DIAMETER	12.00	
SPECIFIC DIAMETER	1.52				

TABLE 30. — FULL-EXPANDER ENGINE — 15,000 LBF THRUST (COPPER GROOVED CHAMBER)

ENGINE PERFORMANCE	E PARAMETERS
在 沒 年 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表	******

CHAMBER PRESSURE	1556.2
VAC ENGINE THRUST	15000.
TOTAL ENGINE FLOH RATE	31.25
DEL. VAC. ISP	480.0
THROAT AREA	4.71
NOZZLE AREA RATIO	1000.0
NOZZLE EKIT DIAMETER	77.46
FIGURE MIXTURE RATIO	6.00
FTA C*	0.993
CHAMBER COOLANT DP	523.
CHAMBER COOLANT DT	535.
MOZZI E / CHAMRER O	9138.

ENGINE STATION CONDITIONS

		SYSTEM CON	mitions +		
	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
STATION B.P. INLET	18.6	37.4	4.47	-107.5	4.37
B.P. EXIT	100.5	38.5	4.47	-103.0	4.39
	100.5	38.5	4.47	-103.0	4.39
PURP INLET	1526.5	58.2	4.47	-15.2	4.43
IST STAGE EXIT	2944.9	77.0	4.47	71.3	4.48
2ND STAGE EXIT	4356.9	95.8	4.47	156.4	4.53
PUMP EXIT	4313.3	95.4	4.47	156.4	4.51
*	3789.8	630.7	4.47	2200.2	0.99
COOLANT EXIT	3751.9	630.9	0.22	2200.2	0.96
	1742.3	642.6	0.22	2200.2	0.48
TBV EXIT	3751.9	630.9	4.25	2200.2	0.98
02 TRB INLET	3374.2	618.6	4.25	2146.9	0.91
OZ TRB EXIT	3374.2	618.6	4.25	2146.9	0.91
H2 TRB INLET	1866.0	551.6	4.25	1873.8	0.59
H2 TRB EXIT	1834.4	551.7	4.25	1873.8	0.58
HZ TRB DIFFUSER	1816.1	551.7	4.25	1873.8	0.58
H2 BST TRB IN	1794.8	550.6	4.25	1869.1	0.57
H2 BST TRB OUT	1780.4	550.7	4.25	1869.1	9.57
H2 BST TRB DIFF	1762.6	550.7	4.25	1869.1	9.56
02 BST TRB IN	1752.6	550.1	4.25	1866.5	8.56
02 BST TRB OUT	1752.0	550.1	4.25	1866.5	0.56
02 BST TRB DIFF H2 TANK PRESS	18.6	562.4	0.0064	1883.2	6.0062
	1742.3	554.7	6.46	1883.2	0.55
GOX HEAT EXCH OUT		554.4	4.46	1881.8	0.55
FSOV INLET	1733.6	554.4	4.46	1881.6	0.55
	1690.2	554.6	4.46	1881.6	0.54
FSOV EXIT	1655.8	554.7	4.46	1881.8	0.53
CHAMBER INJ	1556.2	334			
CHAMBER	1334.2				
	* DXY		CONDITIONS		
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	26.8	61.1	71.17
B.P. EXIT	135.6	163.2	26.8	61.5	71.20
PUMP INLET	135.6	163.2	26.8	61.5	71.20
PUMP EXIT	2520.3	174.8	26.8	69.9	71.59
02 TANK PRESS	16.0	400.0	0.045	204.7	0.12
OCV INLET	2495.1	174.9	26.8	69.9	71.55
OCV EXIT	1746.6	177.7	26.8	69.9	70.38
CHAMBER INJ	1711.8	177.8	26.8	69.9	70.33
CHAMBER	1556.2				
		# VALVE DA	TA =		
VALVE	DELTA P	AREA	FLOR	% BYPASS 5.00	
TBV	2010.	0.01	0.22	5.UV	
FSOV	43.	1.34	4.46		
OCV	749.	0.17	26.79		
■ INJECTOR DATA ■					

FLOH 4.46 26.79 VELOCITY

1321.67 143.17

DELTA P AREA 117. 0.92 173. 0.38

INJECTOR FUEL LOX

TABLE 30. — FULL-EXPANDER ENGINE — 15,000 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

	HERY PERFORMANCE DATA =	
	MERT PERFURMANCE DATA B	
******	在海里水水水水水水水水	
# H2 BOOST TURBINE #	# H2 BOOST P	UMP =
*************	*****	
EFFICIENCY (T/T) 0.742 EFFICIENCY (T/S) 0.390	EFFICIENCY	0.766
SPEED (RPM) 53252.	HORSEPOWER SPEED (RPM)	29. 53252.
MEAN DIA (IN) 1.16	S SPEED	3049.
EFF AREA (INC) 1.76	HEAD (FT)	2689.
U/C (ACTUAL) 0.553	DIA. (IN)	1.89
MAX TIP SPEED 389.	TIP SPEED	438.
STAGES 1	VOL. FLON	457.
GAMMA 1.37 PRESS RATIO (T/T) 1.01	HEAD COEF FLOW COEF	0.450
PRESS RATIO (T/S) 1.02	ream coer	0.201
HORSEPOHER 29.		
EXIT MACH NUMBER 0.11		
SPECIFIC SPEED 146.55		
SPECIFIC DIAMETER 0.52		
表 表 故 就 就 就 就 是 是 是 点 说 本	****	
# H2 TURBINE #	# H2 PUMP	
*******	*****	
		STAGE THO STAGE THREE
FET TOTAL CO.		******** ********
EFFICIENCY (T/T) 0.818 EFFICIENCY (T/S) 0.790	EFFICIENCY 0.680	
SPEED (RPM) 136363.	HORSEPOHER 556. SPEED (RPM) 136363.	547. 538. 136363. 136363.
HORSEPOHER 1641.	SS SPEED 9599.	
MEAN DIA. (IN) 2.42	S SPEED 917.	922. 927.
EFF AREA (IN2) 0.23	HEAD (FT) 46464.	45825. 45101.
U/C (ACTUAL) 0.550	DIA. (IN) 2.85	2.85 2.85
MAX TIP SPEED 1536. STAGES 2	TIP SPEED 1694.	1695. 1694.
GANHA 1.37	VOL. FLOW 453. HEAD COEF 0.521	448. 443. 0.513 0.5 0 5
PRESS RATIO (T/T) 1.81	FLON COEF 0.105	0.513 0.505
PRESS RATIO (T/S) 1.85	DIAMETER RATIO 0.363	
EXIT MACH NUMBER 0.17	BEARING DN 3.00E+06	
SPECIFIC SPEED 48.65	SHAFT DIAMETER 22.00	
SPECIFIC DIAMETER 1.61		
网络 医乳蛋白蛋白 医乳毒素 医乳毒素 医乳毒素	*******	
* 02 BOOST TURBINE #	# 02 BOOST PU	MP #
	国际保护业务	F # M M
EFFICIENCY (T/T) 0.826	EFFICIENCY	0.764
EFFICIENCY (T/S) 0.689 SPEED (RPM) 14271.	HORSEPOHER	15.
MEAN DIA (IN) 3.18	SPEED (RPM) S SPEED	14271. 3026.
EFF AREA (IN2) 2.59	HEAD (FT)	242.
U/C (ACTUAL) 0.553	DIA. (IN)	2.11
MAX TIP SPEED 234.	TIP SPEED	152.
STAGES 1	VOL. FLON	169.
GAMMA 1.37 PRESS RATIO (T/T) 1.01	HEAD COEF FLON COEF	0.450 0.200
PRESS RATIO (T/S) 1.01	read coer	0.200
HORSEPOHER 15.		
EXIT MACH NUMBER 0.04		
SPECIFIC SPEED 96.18		
SPECIFIC DIAMETER 0.86		
# 02 TURBINE #	# 02 PUMP #	
*******	********	
EFFICIENCY (T/T) 0.821	EFFICIENCY	0.730
EFFICIENCY (T/S) 0.767	HORSEPOHER	321.
SPEED (RPH) 84487. HORSEPOWER 321.	SPEED (RPM)	
MEAN DIA (IN) 2.42	SS SPEED S SPEED	21475. 1902.
EFF AREA (IN2) 0.33		4795.
U/C (ACTUAL) 0.545	HEAD (FT) DIA. (IN)	1.64
MAX TIP SPEED 952.	TIP SPEED	606.
STAGES 1	VOL. FLOW	168.
GAMMA 1.37	HEAD COEF	0.420
PRESS RATIO (T/T) 1.11 PRESS RATIO (T/S) 1.12	FLOW COEF	0.158
FYIT MACH MIMPED 0 10	DIAMETER RATIO BEARING DN 1	0.683 52F+06
SPECIFIC SPEED 48.53	SHAFT DIAMETER	18.00
SPECIFIC DIAMETER 1.61		

TABLE 31. — FULL-EXPANDER ENGINE — 25,000 LBF THRUST (COPPER GROOVED CHAMBER)

**	ENGINE PE	RFORMANCE	PARAMETERS		
CHAM	BER PRESSUR	F		1491.7	
-	ENGINE THRU		•	25000.	
	L ENGINE FL	OW RATE		52.09	
	VAC. ISP			480.0 8.19	
	AT AREA LE AREA RAI	110		1000.0	
	LE EXIT DIA			102.12	
	NE MIXTURE			6.00	
ETA				0.993 473.	
	BER COOLAN			448.	
	BER COOLANT LE/CHAMBER			12774.	
	ENGINE	STATION C	CONDITIONS	***	
		PURTEM COM	DITIONS #		
STATION	PRESS	TEMP	FLON	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	7.45	-107.5	4.37
B.P. EXIT	100.6	38.5	7.45	-103.0	4.39
PUMP INLET	100.6	38.5	7.45	-103.0 -27.1	4.39 4.50
	1433.1	54.5 70.0	7.45 7.45	48.6	4.58
2ND STAGE EXIT PUMP EXIT	2782.0 4147.2	85.1	7.45	123.9	4.67
COOLANT INLET	4105.7	85.5	7.45	123.9	4.65
COOLANT EXIT	3632.5	533.3	7.45	1837.8	1.11
TBV INLET	3596.2	533.5	0.37	1837.8 1837.8	1.10 0.54
TBV EXIT	1670.3 3596.2	542.6 533.5	0.37 7.08	1837.8	1.10
02 TRB INLET 02 TRB EXIT	3211.3	521.9	7.08	1788.0	1.02
		521.9	7.08	1788.0	1.02
H2 TRB INLET H2 TRB EXIT H2 TRB DIFFUSER H2 DST TRR IN	1799.8	463.1	7.08	1549.3 1549.3	0.68 0.66
H2 TRB DIFFUSER	1760.7	463.3	7.08 7.08	1549.3	0.66
H2 BST TRB IN H2 BST TRB OUT	1743.1	463.3 462.1	7.08	1544.5	0.65
H2 BST TRB DIFF	1708.1	462.2	7.08	1544.5	0.64
MI AGT TOR IM	1691.0	462.3	7.08	1544.5	0.64
TUO BOT TOR OUT	1680.2	461.6	7.08	1542.0	0.64 0.64
02 BST TRB DIFF	1678.7	461.6	7.08 0.0127	1542.0 1556.8	0.0074
H2 TANK PRESS GOX HEAT EXCH IN		471.0 465.6	7.44	1556.8	0.63
GOX HEAT EXCH OU		465.3	7.44	1555.4	0.62
FSOV INLET	1661.9	465.3	7.44	1555.4	0.62
FSOV EXIT	1620.4	465.4	7.44	1555.4 1555.4	0.61
CHAMBER INJ CHAMBER	1587.3 1491.7	465.5	7.44	1555.4	
			CONDITIONS	\$ *	B57 M 1 TW
STATION			FLOR	ENTHALPY 61.1	DENSITY 71.17
B.P. INLET	16.0	162.7 163.2	44.7 44.7	61.5	71.20
B.P. EXIT PUMP INLET	135.6 135.6	163.2	44.7	61.5	71.20
PUMP EXIT	2415.8	173.8	44.7	69.3	71.65
02 TANK PRESS	16.0	400.0	0.076	204.7	0.12 71.61
OCV INLET	2391.7	173.9	44.6 44.6	69.3 69.3	70.50
OCV EXIT	1674.2 1640.9	176.6 176.7	44.6	69.3	70.44
CHAMBER INJ CHAMBER	1491.7				
		WALVE DA	ATA =		
VALVE	DELTA P		FLON	* BYPASS	
TBV	1926. 42.	0.02 2.14	0.37 7.44	5.00	
FSOV OCV	718.	0.29			
	•	INJECTOR	DATA =		
INJECTOR	DELTA P	AREA	FLOH	VELOC1TY	
FUEL	112.	1.47		1218.70	
LOX	166.	0.65	44.64	140.06	

TABLE 31. — FULL-EXPANDER ENGINE — 25,000 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

•	TURBONAC	HINERY PERFORMANCE	DATA #		

* H2 800ST TU			H2 BOOST P		
********	*****		********		
EFFICIENCY (T/T)			CIENCY	0.766	
EFFICIENCY (T/S) SPEED (RPM)	0.458 41277.		POHER	48.	
MEAN DIA (IN)	1 45	S SPEEL	O (RPM)	41277. 3 948 .	
EFF AREA (IN2)	2.72		(FT)	2694.	
U/C (ACTUAL)		DIA.		2.43	
MAX TIP SPEED STAGES	374. 1		FLON	439. 742.	
		HEAD		0.450	
PRESS RATIO (T/T)	1.01	FLON	COEF	0.281	
PRESS RATIO (T/S) HORSEPOWER	1.02				
EXIT NACH NUMBER	48. 0.11				
SPECIFIC SPEED					
SPECIFIC DIAMETER	0.53				
********			********		
# H2 TURBINE			# H2 PUMP		
******			********		
					STAGE THREE
EFFICIENCY (T/T)	0.869	EFFICIENCY	0.727	0.726	0.725
EFFICIENCY (T/S)		HORSEPOHER	880.	797.	794.
SPEED (RPM)	125000.	SPEED (RPM)	125000.	125000.	125000.
HORSEPOHER	2391.	SS SPEED	11347.		
MEAN DIA. (IN) EFF AREA (IN2)		S SPEED HEAD (FT)	1142. 42954.	1136. 42738.	1131. 42491.
U/C (ACTUAL)	0.550	DIA. (IN)	3.04		3.04
MAX TIP SPEED	1465.	TIP SPEED	1658.	1658.	1658.
STAGES GAMMA	2 1.39	VOL. FLON HEAD COEF	744.	730.	717.
PRESS RATIO (T/T)		FLON COEF	0.503 8.119	0.500	0.497
PRESS RATIO (T/S)		DIAMETER RATIO			
EXIT MACH NUMBER		BEARING DN			
SPECIFIC SPEED SPECIFIC DIAMETER		SHAFT DIAMETER	24.00		
STEEL TO BIMETER	1.55				
*******		HAI			
# 02 BOOST TUR			02 BOOST PU		
EFFICIENCY (T/T)			**********		
EFFICIENCY (T/S)		HORSEF	ENCY POHER	26.	
	11054.	SPEED	(RPH)	11054.	
MEAN DIA (IN) EFF AREA (IN2)		S SPEE HEAD		3026.	
U/C (ACTUAL)			(IN)	242. 2.72	
MAX TIP SPEED	232.	TIP SE		152.	
STAGES		VOL. F		282.	
PRESS RATIO (T/T)	1.39 1.01	HEAD C FLON C		0.450 0.200	
PRESS RATIO (T/S)		i com c	~~	0.200	
HORSEPOHER	26.				
EXIT MACH NUMBER SPECIFIC SPEED	0.04 94.95				
SPECIFIC DIAMETER					
*********			********		
= 02 TURBINE =			02 PUMP *		
EFFICIENCY (T/T)			ENCY		
EFFICIENCY (T/S)		HORSEP	OHER	498.	
SPEED (RPM)	63806.	SPEED	(RPH)		
HORSEPOHER HEAN DIA (IN) EFF AREA (IN2)	498. 2.46	SS SPE S SPEE	ED n	20937. 1918.	
EFF AREA (IN2)	0.51			4581.	
U/C (ACTUAL)	0.435	DIA.	(FT) (IN)	2.11	
MAX TIP SPEED	749.	TIP SP	EED	588.	
STAGES GAMMA	1 1.39	VOL. F HEAD C		280. 0.426	
PRESS RATIO (T/T)		FLOH C		0.426	
PRESS RATIO (T/S)	1.13		ER RATIO	0.684	
EXIT MACH NUMBER SPECIFIC SPEED	0.11		G DN 1		
SPECIFIC SPEED SPECIFIC DIAMETER		SHAFT	DIAMETER	22.00	
- LOW TO DIMINETER	,				

TABLE 32. - FULL-EXPANDER ENGINE - 37,500 LBF THRUST (COPPER GROOVED CHAMBER)

			E PARAMETER		
••	*******		*****	*****	
CVA	BER PRESSU	DF		1334.9	
	ENGINE THR			37500.	
	L ENGINE F			78.14	
	VAC. ISP			479.9	
	AT AREA			13.72 1000.0	
NOZZ NOZZ	LE AREA RA	AMETER		132.16	
ENGI	NE MIXTURE	RATIO		6.00	
ETA	C*			0.993	
	BER COOLAN			386.	
	BER COOLAN			376. 16125.	
NOZZ	LE/CHAMBER	u	•	16125.	
			CONDITIONS		
	********	*****	********		
STATION B.P. INLET B.P. EXIT PUMP INLET 1ST STAGE EXIT 2ND STAGE EXIT 2ND STAGE EXIT COOLANT INLET COOLANT INLET TBV INLET TBV INLET TBV EXIT 02 TRB INLET 02 TRB EXIT H2 TRB INLET 172 TRB INLET 172 TRB INLET 172 TRB DIFFUSER 172 TRB DIFFUSER 173 TRB DUT 174 BST TRB DUT 175 BST TRB DUT 175 BST TRB DUT 176 BST TRB DUT 177 BST TRB DUT 178 BST TRB DUT 179 BST TRB DUT 170 BST TRB DUT 170 BST TRB DUT 170 BST TRB DUT 171 BST TRB DUT 172 BST TRB DUT 173 BST TRB DUT 174 BST TRB DUT 175 BST TRB DUT 175 BST TRB DUT 175 BST TRB DUT 176 BST TRB DUT 177 BST TRB DUT 178 BST TRB DUT	u FIE	SYSTEM CO	NDITIONS #		
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSIT
B.P. INLET	18.6	37.4	11.18	-107.5	4.37
B.P. EXIT	100.7	38.5	11.18	-103.0	4.39 4.39
PUMP INLET	100.7	38.5	11.18	-183.0	4.52
1ST STAGE EXIT	1267.6 2660.2	64.3	11.18	25.0	4.62
PIMP FXIT	3673.3	76.6	11.18	89.2	4.69
COOLANT INLET	3636.6	77.0	11.18	89.2	4.68
COOLANT EXIT	3250.7	452.5	11.18	1530.9	1.17
TBV INLET	3218.2	452.7	0.56	1530.7	0.57
1BV EXII	1494.5 3218.2	452.7	10.63	1530.9	1.16
02 TRB EXIT	2875.6	442.7	10.63	1487.4	1.07
H2 TRB INLET	2875.6	442.7	10.63	1487.4	1.07
H2 TRB EXIT	1623.9	394.1	10.63	1285.1	0.72 0.70
H2 TRB DIFFUSER	1581.6	394.2	10.63	1285.1	0.70
H2 BST TRB OUT	1565.8	393.1	10.63	1260.3	0.69
H2 BST TRB DIFF	1530.1	393.1	10.63	1280.3	0.68
02 BST TRB IN	1514.8	393.2	10.63	1280.3	0.67
02 BST TRB OUT	1503.5	392.5	10.63	1277.8	0.67 0.67 0.0088
02 BST TRB DIFF	1502.0	392.5	10.63	1277.8	0.0088
CON MENT EXCH IN	1494.5	395.8	11.16	1290.4	0.66
GOX HEAT EXCH OU	T 1487.0	395.5	11.16	1289.0 1289.0 1289.0 1289.0	0.66
FSOV INLET	1487.0	395.5	11.16	1289.0	0.66
FSOV EXIT	1449.9	395.6	11.16	1289.0	0.64
FSOV INLET FSOV EXIT CHAMBER INJ CHAMBER	1420.3	395.6	11.16	1287.0	0.43
CHARBER	1334.7				
	# OXYG	EN SYSTEM	CONDITION	S =	
STATION	PRESS	TEMP	FLON	ENTHALPY	21 17
B.P. INLET	16.0	162.7	67.1 67.1 67.1	ENTHALPY 61.1 61.5	71.17
DIMP TALFT	135.6	163.2	6/.1	61.5	71.20
PUMP EXIT	2162.0	172.3	67.1		71.65
02 TANK PRESS	16.0	400.0	0.114	204.7	0.12
OCV INLET	2140.4	172.4	47.0	68.3 68.3	71.62 70.61
OCV EXIT	1498.3	174.9	67.0 67.0		70.61
B.P. INLET B.P. EXIT PUMP INLET PUMP EXIT OZ TANK PRESS OCV INLET OV EXIT CHAMBER INJ CHAMBER	1334.9	173.0	07.4		
		VALVE DA	ITA #		
	DELTA P	AREA	FLOH	* BYPASS	
TBV	1724.	0.03	0.56 11.16	5.00	
FSOV	37. 642.	0.47	66.97		
OCV	****	U.71			

INJECTOR

FUEL

LOX

. INJECTOR DATA *

FLON

11.16

66.97

AREA

2.28

1.03

DELTA P

100.

148.

VELOCITY

1117.82

132.38

TABLE 32. — FULL-EXPANDER ENGINE — 37,500 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

_					
		INERY PERFORMANCE			
•	********	***********	***		
* H2 BOOST TU			********		
* 112 80021 10			H2 BOOST P		
EFFICIENCY (T/T)			CIENCY	0.765	
EFFICIENCY (T/S)		HORSE	EPOHER	72.	
	33715.		D (RPM)	33715.	
MEAN DIA (IN) EFF AREA (IN2)		S SP(HEAD		3047.	
U/C (ACTUAL)			(IN)	2697. 2.98	
MAX TIP SPEED	372.		SPEED	439.	
STAGES	1		FLON	1144.	
GAMMA PRESS RATIO (T/T)	1.41	HEAD		0.450	
PRESS RATIO (T/S)		PLUN	COEF	0.201	
HORSEPOHER	72.				
EXIT MACH NUMBER					
SPECIFIC SPEED SPECIFIC DIAMETER	150.00 0.54				
SPECIFIC DIAMETER	U.54				
********			*****		
# H2 TURBINE			# H2 PUMP	•	
*******	•		******		
					STAGE THREE
EFFICIENCY (T/T)	0.881	EFFICIENCY	0.754		0.752
EFFICIENCY (T/S)		HORSEPOHER	1012.	1015.	1015.
SPEED (RPM)		SPEED (RPM)	107143.	107143.	107143.
HORSEPOHER HEAN DIA. (IN)	3042. 2.65	SS SPEED S SPEED	11905.		
EFF AREA (IN2)		HEAD (FT)	1325. 37518.	1310. 37553.	1300. 37495.
U/C (ACTUAL)	0.550	DIA. (IN)	3.37	3.37	3.37
MAX TIP SPEED	1373.	TIP SPEED	1575.		1575.
STAGES GAMMA	2 1.41	VOL. FLOH HEAD COEF	1111.	1087. 0.487	1069.
PRESS RATIO (T/T)		FLON COEF	0.487 0.130	0.487	0.486
PRESS RATIO (T/S)		DIAMETER RATIO			
EXIT MACH NUMBER		BEARING DN			
SPECIFIC SPEED SPECIFIC DIAMETER	70.25 1.18	SHAFT DIAMETER	28.00		
	1.10				
********		**	********	****	
* 02 BOOST TUR			02 BOOST PU		
EFFICIENCY (T/T)		EFFIC:	********	0.764	
EFFICIENCY (T/S)			POHER	39.	
SPEED (RPM)	9026.	SPEED	(RPM)	9026.	
MEAN DIA (IN) EFF AREA (IN2)	5.03	S SPEI		3026.	
EFF AREA (IN2) U/C (ACTUAL)	5.58 0.553	HEAD DIA.	(FT) (IN)	242. 3.34	
MAX TIP SPEED	231.	TIP SE		132.	
STAGES	1	VOL. F		423.	
GAMMA PRESS RATIO (T/T)	1.41	HEAD (0.450	
PRESS RATIO (T/S)		FLOH (OEF	0.200	
HORSEPOHER	39.				
EXIT MACH NUMBER	0.04				
SPECIFIC SPEED	93.77				
SPECIFIC DIAMETER	0.91				
********			******		
# 02 TURBINE #			02 PUMP =		
EFFICIENCY (T/T)	0.000		*****		
EFFICIENCY (T/S)		EFFICI HORSEP		0.760	
SPEED (RPM)				653. 69369.	
HORSEPOWER	653.	SS SPE	ED D	19842.	
MEAN DIA (IN) EFF AREA (IN2)	2.65			1986.	
U/C (ACTUAL)		HEAD	(FT)	4071.	
MAX TIP SPEED	647.	DIA. TIP SP	(IN) FFD	2.56 552.	
STAGES	2	VOL. F		420.	
GAMMA	1.41	HEAD C		0.431	
PRESS RATIO (T/T)		FLOW C		0.162	
PRESS RATIO (T/S) EXIT MACH NUMBER	1.13 0.10		ER RATIO	0.686	
SPECIFIC SPEED	80.41		G DN 1 DIAMETER		
SPECIFIC DIAMETER	1.03	0.24 1			

TABLE 33. — FULL-EXPANDER ENGINE — 50,000 LBF THRUST (COPPER GROOVED CHAMBER)

ENGINE	PERFORMANCE PARAMETERS
********	1. 未本金额的企业的有效的现在分词 医电子电子 医电子电子

CHAMBER PRESSURE	1342.3
VAC ENGINE THRUST	50000.
TOTAL ENGINE FLON RATE	104.18
DEL. VAC. ISP	479.9
THROAT AREA	18.19
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	152.19
ENGINE MIXTURE RATIO	6.00
ETA C#	0.993
CHAMBER COOLANT DP	361.
CHAMBER COOLANT DT	365.
NOZZLEZCHANBER Q	20902.

* FUEL SYSTEM CONDITIONS *						
	PRESS	TEMP	FLOH	ENTHALPY	DENSITY	
STATION	18.6	37.4	14.91	-107.5	4.37	
B.P. INLET	100.7	38.5	14.91	-103.0	4.39	
B.P. EXIT PUMP INLET	100.7	38.5	14.91	-103.0	4.39	
IST STAGE EXIT	1260.0	51.0	14.91	-40.6	4.53	
2ND STAGE EXIT	2449.2	63.2	14.91	22.0	4.64	
PUMP EXIT	3666.8	75.1	14.91	84.8	4.74	
COOLANT INLET	3630.1	75.4	14.91	84.8	4.72	
COOLANT EXIT	3268.8	440.8	14.91	1486.4	1.20	
TBV INLET	3236.1	440.9	0.75	1486.4	1.19	
TBV EXIT	1502.6	647.3	0.75	1486.4	0.59	
D2 TRB INLET	3236.1	440.9	14.17	1486.4	1.19	
DE TRE EXIT	2884.1	431.0	14.17	1443.2	1.10	
H2 TRB INLET	2884.1	431.0	14.17	1443.2	1.10	
H2 TRB EXIT	1637.4	383.9	14.17	1245.3	0.74	
H2 TRB DIFFUSER	1590.4	384.0	14.17	1245.3	0.72	
H2 BST TRB IN	1574.5	384.0	14.17	1245.3	0.72	
H2 BST TRB OUT	1551.5	382.8	14.17	1240.6	0.71	
H2 BST TRB DIFF	1538.6	382.9	14.17	1240.6	0.70	
OZ BST TRB IN	1523.2	382.9	14.17	1240.6	0.69	
OZ BST TRB OUT	1511.7	382.3	14.17	1238.0	0.69	
OZ BST TRB DIFF	1510.1	382.3	14.17	1238.0	0.69	
H2 TANK PRESS	18.6	387.9	0.0309	1250.4	0.0090	
GOX HEAT EXCH IN	1502.6	385.5	14.88	1250.4	0.68	
GOX HEAT EXCH OUT		385.1	14.88	1249.0	0.68	
FSOV INLET	1495.1	385.1	14.88	1249.0	0.68	
FSOV EXIT	1457.7	385.2	14.88	1249.0	0.66	
CHAMBER INJ	1428.0	385.3	14.88	1249.0	0.65	
CHAMBER	1342.3					
	# OXY	EN SYSTEM	CONDITIONS	s =		
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY	
B.P. INLET	16.0	162.7	89.4	61.1	71.17	
B.P. EXIT	135.6	163.2	89.4	61.5	71.20	
PUMP INLET	135.6	163.2	89.4	61.5	71.20	
PUMP EXIT	2173.9	172.2	89.4	68.3	71.69	
02 TANK PRESS	16.0	400.0	0.151	204.7	0.12	
OCV INLET	2152.2	172.3	89.3	68.3	71.65	
OCV EXIT	1506.5	174.7	89.3	68.3	70.64	
CHAMBER INJ	1476.5	174.8	89.3	68.3	70.60	
CHAMBER	1342.3					
		. VALVE DA	ATA #			
_	PC 74 7	4054	FLOH	% BYPASS		
VALVE	DELTA P	AREA	0.75	5.00		
TBV	1733.	0.03	14.88	5.00		
F\$0V	37.	4.32	89.30			
ocv	646.	0.62	87.30			
# INJECTOR DATA #						
INJECTOR	DELTA P	AREA	FLON	VELOCITY		
	101.	2.98	14.88	1104.05		
FUEL	149.	1.37	89.30	132.72		
FOX	4-7.					

TABLE 33. — FULL-EXPANDER ENGINE — 50,000 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

		INERY PERFORMANCE I			
*********			******		
# H2 BOOST TUR			H2 BOOST PI		
*********	****		********		
EFFICIENCY (T/T)	0.861	EFF 10	TENCY	0.765	
EFFICIENCY (T/S)			POMER	96.	
SPEED (RPM)			(RPM)	29193.	
MEAN DIA (IN) EFF AREA (IN2)	2.04		ED	3047.	
U/C (ACTUAL)	5.08	PLAU	(FT) (IN)	2696. 3.44	
MAX TIP SPEED	368.		PEED	439.	
STAGES	1		FLON	1525.	
GAMMA	1.39	HEAD		0.450	
PRESS RATIO (T/T) PRESS RATIO (T/S)	1.01	FLOH	COEF	0.201	
HORSEPOHER	96.				
EXIT MACH NUMBER SPECIFIC SPEED	0.12				
SPECIFIC DIAMETER					
SPECIFIC DIAMETER	0.54				

# H2 TURBINE #			# H2 PUMP	-	

					STAGE THREE

EFFICIENCY (T/T)		EFF ICIENCY	0.766	0.765	0.764
EFFICIENCY (T/S)	U.837	HORSEPOHER SPEED (RPM)	1317.	1323. 100000.	1326.
SPEED (RPM) HORSEPOHER MEAN DIA. (IN) EFF AREA (IN2)	1964 1964	SPEED (RPM)	100000. 12833.	100000.	100000.
MEAN DIA. (IN)	2.81	S SPEED		1415.	1399.
EFF AREA (IN2)	0.73	HEAD (FT)	37200.	1415. 37299.	37355.
U/C (ACTUAL)	0.550	DIA. (IN)	3.63	3.63	3.63
MAX TIP SPEED	1373.	TIP SPEED	1585. 1478.	1585.	1585.
STAGES	2	VOL. FLOW		1443.	1412.
GAMMA	1.39	HEAD COEF	0.476	0.478	0.479
PRESS RATIO (T/T)		FLOW COEF	0.136		
PRESS RATIO (T/S) EXIT MACH NUMBER	1.83 0.22	DIAMETER RATIO BEARING DN			
SPECIFIC SPEED	75.88	SHAFT DIAMETER			
SPECIFIC DIAMETER		SHE I DIMETER	30.00		
*****	****	**	*******	***	
# 02 BOOST TURE			02 800 ST PU		

EFFICIENCY (T/T) EFFICIENCY (T/S)			IENCY POMER	0.764 51.	
SPEED (RPM)		PUKSEI	(RPM)	7814	
MEAN DIA (IN)		S SPE		3026.	
EFF AREA (1N2)	7.24	HEAD	(FT)	242.	
U/C (ACTUAL)	0.553	DIA.	(IN)	3.85	
MAX TIP SPEED	230.		PEED	132.	
STAGES	1	VOL. (564.	
GAMMA	1.39	HEAD (0.450	
PRESS RATIO (T/T) PRESS RATIO (T/S)		FLON	COEF	0.200	
HUDSEDURED	E 1				
EXIT MACH NUMBER	0.04				
EXIT MACH NUMBER SPECIFIC SPEED SPECIFIC DIAMETER	93.13				
SPECIFIC DIAMETER	0.92				
********		•	*******		
* 02 TURBINE *			02 PUMP #		

EFFICIENCY (T/T) EFFICIENCY (T/S)			LENCY POHER	0.769 866.	
SPEED (RPM)				42723.	
HORSEPOHER	866.			19827.	
		S SPEE	ED D	1976.	
MEAN DIA (IN) EFF AREA (IN2)			(FT)	4093.	
U/C (ACTUAL)		DIA.	(IN)	2.95	
MAX TIP SPEED	601.	TIP SE	-	551.	
STAGES	. 2	VOL. F		560.	
GAMMA	1.39	HEAD (0.434	
PRESS RATIO (T/T)	_	FLON (0.161	
PRESS RATIO (T/S) EXIT MACH NUMBER	1.13		ER RATIO 4G DIN	0.686	
SPECIFIC SPEED	78.94		O UN DIAMETER		
SPECIFIC DIAMETER		J. W. T.	SIME ILR	30.00	

TABLE 34. — SPLIT-EXPANDER ENGINE — 7500 LBF THRUST (COPPER GROOVED CHAMBER)

ENGINE	PERFORMANCE PARAMETERS	

CHAMBER PRESSURE	1247.9
VAC ENGINE THRUST	7500.
TOTAL ENGINE FLOW RATE	15.63
DEL. VAC. ISP	479.9
THROAT AREA	2.93
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	61.12
ENGINE MIXTURE RATIO	6.00
ETA CH	0.993
CHAMBER COOLANT DP	1112.
CHAMBER COOLANT DT	993.
	6.09.7

	• FUEL	SYSTEM CO	NDITIONS #				
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY		
B.P. INLET	18.6	37.4	2.23	-107.5	4.37		
B.P. EXIT	100.7	38.5	2.23	-103.0	4.39		
PUMP INLET	100.7	38.5	2.23	-103.0	4.39		
IST STAGE EXIT	1756.6	65.6	2.23	10.7	4.31		
JBV INLET	1721.5	65.9	1.12	10.9	4.29		
JBV EXIT	1463.2	67.8	1.12	10.9	4.09		
2ND STAGE EXIT	3105.7	92.3	1.12	119.1	4.18		
PUMP EXIT	4354.6	116.4	1.12	218.8	4.14 4.12		
COOLANT INLET	4311.0	116.7	1.12	218.8	0.50		
COOLANT EXIT	3198.8	1110.0	1.12 0.06	3876.7 3876.7	0.50		
TBV INLET	3166.8	1110.2	0.06	3876.7	0.24		
TBV EXIT	1470.1	1122.3	1.06	3876.7	0.50		
02 TRB INLET	3166.8	1110.2 1087.4	1.06	3788.8	0.46		
02 TRB EXIT	2851.0	1087.4	1.06	3788.8	0.46		
H2 TRB INLET	2851.0 1560.2	964.9	1.06	3329.9	0.29		
H2 TRB EXIT H2 TRB DIFFUSER	1542.9	965.0	1.06	3329.9	0.29		
H2 BST TRB IN	1527.5	965.0	1.06	3329.9	0.29		
H2 BST TRB OUT	1508.2	962.5	1.06	3320.4	0.28		
H2 BST TRB DIFF	1503.2	962.5	1.06	3320.4	0.28		
02 BST TRB IN	1488.1	962.6	1.06	3320.4	0.28		
OZ BST TRB OUT	1478.2	961.2	1.06	3315.2	0.28		
02 BST TRB DIFF	1477.5	961.2	1.06	3315.2	0.28		
H2 TANK PRESS	18.6	979.5	0.0018	3343.3	0.0036		
GOX HEAT EXCH IN	1470.1	969.3	1.12	3343.3	0.27		
GOX HEAT EXCH DUT		968.6	1.12	3340.5	0.27		
MIXER HOT IN	1462.8	968.6	1.12	3340.5	0.27		
MIXER COLD IN	1463.2	67.8	1.12	10.9	4.09		
MIXER OUT	1389.6	498.7	2.23	1674.4	0.49		
FSOV INLET	1389.6	498.7	2.23	1674.4	0.49		
FSOV EXIT	1354.9	498.9	2.23	1674.4	0.48		
CHAMBER INJ	1341.3	498.9	2.23	1674.4	0.48		
CHAMBER	1247.9						
			CONDITIONS				
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY		
B.P. INLET	16.0	162.7	13.4	61.1	71.17		
B.P. EXIT	135.6	163.2	13.4	61.5	71.20		
PUMP INLET	135.6	163.2	13.4	61.5	71.20		
PUMP EXIT	2020.9	173.0	13.4	68.4	71.41		
02 TANK PRESS	16.0	400.0	0.023	204.7	0.12		
OCV INLET	2000.7	173.1	13.4	68.4	71.38		
OCV EXIT	1400.5	175.4	13.4	68.4	70.43		
CHAMBER INJ	1386.5	175.4	13.4	68.4	70.41		
CHAMBER	1247.9						
		* VALVE DA	TA =				
		,					
VALVE	DELTA P	AREA	FLOH	% BYPASS			
JBV	258.	0.05	1.12	50.00			
TBV	1697.	0.00	0.06	5.00			
FSOV	35.	0.79	2.23				
ocv	600.	0.10	13.40				
" INJECTOR DATA "							
INJECTOR	DELTA P	AREA	FLOH	VELOCITY			
FUEL	93.	0.51	2.23	1238.05			
LOX	139.	0.20	13.40	128.16			

TABLE 34. — SPLIT-EXPANDER ENGINE — 7500 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

	TARRARANANARANANANANANANANANANANANANANAN		
	CRT FERFORMANCE DATA		

* H2 BOOST TURBINE *		****	
		OOST PUMP #	
EFFICIENCY (1/T) 0.789		********	
EFFICIENCY (1/1) 0.789	. EFFICIENC		
SPEED (RPM) 75439.	HORSEPOHE		
	SPEED (
	S SPEED	3046.	
		(FT) 2697.	
U/C (ACTUAL) 0.553		(IN) 1.33	
MAX TIP SPEED 484.	TIP SPEED		
STAGES [VOL. FLON	228.	
GAMMA 1.42	HEAD COEF	0.450	
PRESS RATIO (T/T) 1.01	FLOH COEF	0.201	
PRESS RATIO (T/S) 1.02			
HORSEPOHER 14.			
EXIT MACH NUMBER 0.07			
SPECIFIC SPEED 120.28			
SPECIFIC DIAMETER 0.68			
*********		****	
# H2 TURBINE #		PUMP =	
医食用油胶等效医液体剂医食用		HHHHOSE	
		E ONE STAGE THO STAGE THR	
EFFICIENCY (T/T) 0.776			
EFFICIENCY (T/S) 0.759		.621 0.543 0.557	
SPEED (RPM) 187500.	HORSEPOHER	360. 171. 158. 500. 187500. 187500.	
	SPEED (RPM) 187	>UU. 187500. 187500.	
		310.	
MEAN DIA. (IN) 2.28		796. 656. 688.	
EFF AREA (1N2) 0.09	HEAD (FT) 55	008. 45817. 43238.	
U/C (ACTUAL) 0.550		2.26 2.13 2.13	
MAX TIP SPEED 1933.		847. 1743. 1743.	
STAGES 2		233. 120. 121.	
GAPPA 1.42	HEAD COEF 0	.519 0.485 0.458	
PRESS RATIO (T/T) 1.83	FLOW COEF 0	.097	
PRESS RATIO (T/S) 1.85	DIAMETER RATIO 0	. 327	
EXIT MACH NUMBER 0.13	BEARING DN 3.00	E+06	
SPECIFIC SPEED 31.97	SHAFT DIAMETER 1		
SPECIFIC DIAMETER 2.34			
**************	******	***	
# 02 BOOST TURBINE #		DST PUMP #	
***********		*****	
EFFICIENCY (T/T) 0.811	EFF1C1ENCY		
EFFICIENCY (T/S) 0.739	HORSEPOHER		
SPEED (RPM) 20181.	SPEED (RI		
MEAN DIA (IN) 3.19			
	S SPEED	3026.	
	HEAD (I	FT) 242.	
MAY TIP COEFF	DIA. (
MAX TIP SPEED 307. STAGES 1	TIP SPEED		
•	VOL. FLON		
GAMMA 1.42	HEAD COEF	0.450	
PRESS RATIO (T/T) 1.01	FLON COEF	0.200	
PRESS RATIO (T/S) 1.01			
HORSEPOHER 8.			
EXIT MACH NUMBER 0.03			
SPECIFIC SPEED 61.32			
SPECIFIC DIAMETER 1.30			
*********		机装装等	
* 02 TURBINE *	• 02 F	UNP #	
*******	*****	****	
EFFICIENCY (T/T) 0.778	EFFICIENCY	0.702	
EFFICIENCY (T/S) 0.750	HORSEPOHER	172	
SPEED (RPM) 109465.	SPEED IRE	M) 109465.	
HORSEPOHER 132.	SS SPEED	19676.	
HORSEPONER 132. MEAN DIA (IN) 2.28	S SPEED	2077.	
EFF AREA (1N2) 0.13			
U/C (ACTUAL) 0.519	HEAD (F DIA, (I	T) 3801.	
MAX TIP SPEED 1130.			
	TIP SPEED	546.	
-	VOL. FLON	84.	
	HEAD COEF	0.410	
PRESS RATIO (T/T) 1.11	FLOH COEF	0.165	
PRESS RATIO (T/S) 1.12	DIAMETER RA		
EXIT MACH NUMBER 0.07		1.31E+06	
SPECIFIC SPEED 30.59	SHAFT DIAME	TER 12.00	
SPECIFIC DIAMETER 2.33			

TABLE 35. — SPLIT-EXPANDER ENGINE — 15,000 LBF THRUST (COPPER GROOVED CHAMBER)

	01.00	, 22		,	
**	ENGINE PE	ERFORMANCE	PARAMETERS	5 ****	
CUAN	BER PRESSU	of.		1494.3	
	ENGINE THR			15000.	
TOTA	L ENGINE FI			31.25	
	VAC. ISP			480.0 4.91	
	AT AREA LE AREA RA	710		1000.0	
	LE EXIT DI			79.03	
ENG1	NE HIXTURE	RATIO		6.00	
ETA	C=			0.993	
	BER COOLAN			534. 1014.	
	BER COOLAN LE/CHAMBER			8357.	
	ENGINE	STATION C	CONDITIONS		

	FUEL	SYSTEM CON	DITIONS #	ENTHALPY	DENS 1 TY
STATION		TEMP	FLOM 4.47	-107.5	4.37
B.P. INLET	18.6 100.3	37.4 38.5	4.47	-103.0	4.39
B.P. EXIT PUMP INLET	100.3	38.5 38.5	4.47	-103.0	4.39
	2103.5	71.0	4.47	34.3	4.31
JBV INLET	2061.5	71.4	2.23	34.3 34.3	4.28 4.07
JBV EXIT	1752.3	73.6 90.0	2.23 2.23	116.1	4.50
2ND STAGE EXIT PUMP EXIT	4408.2	90.0 107.9	2.23	194.6	4.51
COOLANT INLET	4364.1	108.2	2.23	194.6	4.29
COOLANT EXIT	3830.6	1122.2	2.23	3935.2	0.59 0.58
TBV INLET		1122.5	0.11 0.11	3935.2 3935.2	0.28
TBV EXIT OZ TRB INLET	1761.4	1137.0	2.12	3935.2	0.58
O2 TRB EXIT	3792.3 3361.7	1096.3	2.12	3832.9	0.54
H2 TRB INLET	3361.7	1096.3	2.12	3832.9	0.54
H2 TRB EXIT	3361.7 1864.0	975.8	2.12	3375.0 3375.0	0.34 0.34
M2 TRB DIFFUSER M2 BST TRB IN M2 BST TRB OUT M2 BST TRB DIFF	1846.0	975.9 975.9	2.12 2.12	3375.0	0.34
H2 BST TRE IN	1827.6	973.4	2.12	3365.5	0.33
H2 BST TRB DIFF	1800.6	973.5	2.12	3365.5	0.33
n2 RST TRB IN	1782.6	973.6	2.12	3365.5	0.33 0.33
OZ BST TRB OUT	1771.0	972.2	2.12 2.12	3360.4 3360.4	0.33
02 BST TRB DIFF H2 TANK PRESS	17/0.3	972.2 992.7	0.0036	3389.1	0.0035
GOX HEAT EXCH IN	1761.4	980.5	2.23	3389.1	0.32
GOX HEAT EXCH OU		979.8	2.23	3386.4	0.32
MIXER HOT IN	1752.6	979.8	2.23 2.23	3386.4 34.3	0.32 4. 0 7
MIXER COLD IN MIXER OUT	1752.3 1665.0	73.6 507.2	4.46	1709.0	0.58
FSOV INLET	1665.0	507.2	4.46	1709.0	0.58
FSOV EXIT	1623.3	507.4	4.46	1709.0	0.56
CHAMBER INJ	1607.1	507.4	4.46	1709.0	0.56
CHAMBER				_	
STATION	* 0XY	GEN SYSTEM	CONDITION:	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	26.8	61.1	71.17
B.P. EXIT	135.6	163.2	26.8	61.5	71.20
PUMP INLET	135.6	163.2	26.8	61.5	71.20 71.58
PUMP EXIT	2420.1	174.3 400.0	26.8 0.045	69.5 204.7	0.12
02 TANK PRESS OCV INLET	16.0 2395.9	174.4	26.8	49.5	71.54
OCV EXIT	1677.1	177.1	26.8	69.5	70.42
CHAMBER INJ	1660.3	177.2	26.8	69.5	70.39
CHAMBER	1494.3				
		• VALVE DA	ATA =		
VALVE	DELTA P	AREA	FLOH	% BYPASS	
JBV	309.	0.09	2.23	50.00	
TBV	2031.	0.01	0.11	5.00	
FSOV	42. 719.	1.34	4.46 26.79		
OCV	/17.	3.10	23,		

INJECTOR

FUEL

LOX

* INJECTOR DATA *

AREA

0.85

DELTA P

113. 166.

FLON

4.46

VELOCITY

140.26

TABLE 35. — SPLIT-EXPANDER ENGINE — 15,000 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

	**********	****			
		MERY PERFORMANCE			
* H2 BOOST TU					
* 72 8003) 10			H2 BOOST PI		
EFFICIENCY (T/T)			CIENCY	0.766	
EFFICIENCY (T/S)	0.626		EPOWER	28.	
SPEED (RPM)	53228.	SPEE	(RPH)	53228.	
MEAN DIA (IN)		S SPI	ED	3051.	
EFF AREA (IN2)		HEAD		2684.	
U/C (ACTUAL) MAX TIP SPEED			(IN)	1.88	
STAGES	475. 1		SPEED FLOW	438. 457.	
GAMMA	1.44	HEAD		0.450	
PRESS RATIO (T/T)		FLON		0.201	
PRESS RATIO (T/S)	1.02				
HORSEPOHER	28.				
EXIT MACH NUMBER	0.06				
SPECIFIC SPEED SPECIFIC DIAMETER	116.15				
SPECIFIC DIAMETER	0.72				
*********	•		*****		
* HZ TURBINE	•		# H2 PUMP		
**********	•		*******		
					STAGE THREE
EEELOLENOU (***					*********
EFFICIENCY (T/T)		EFFICIENCY	0.623		0.621
EFFICIENCY (T/S) SPEED (RPM)	0.770 136363.	HORSEPOHER SPEED (RPH)	868.	259.	248.
HORSEPOHER	1375.	SS SPEED (RPM)	136363. 9607.	136363.	130363.
MEAN DIA. (IN)		S SPEED	710.	748.	765.
EFF AREA (IN2)	0.15	HEAD (FT)		39185.	37954.
U/C (ACTUAL)	0.537	DIA. (IN)	3.34	2.66	2.66
MAX TIP SPEED	1884.	TIP SPEED	1990.	1582.	1583.
STAGES GAMMA	2	VOL. FLON	465.	233.	233.
PRESS RATIO (T/T)	1.44	HEAD COEF FLOW COEF	0.541 0.090	0.503	0.488
PRESS RATIO (T/S)	1.83	DIAMETER RATIO			
EXIT MACH NUMBER	0.12		3.00E+06		
SPECIFIC SPEED	30.55	SHAFT DIAMETER			
SPECIFIC DIAMETER	2.41				

D2 BOOST TUR					
**********			D2 BOOST PU		
EFFICIENCY (T/T)		EFFIC		0.764	
EFFICIENCY (T/S)	0.760	HORSE	POMER	15.	
	14271.		(RPM)	14271.	
MEAN DIA (IN)	4.50	S SPEI		3026.	
EFF AREA (IN2)		HEAD		242.	
MAX TIP SPEED	304.	DIA. TIP SI	(IN)	2.11 132.	
STAGES	1	VOL.		169.	
GAMMA	1.44	HEAD (OEF	0.450	
PRESS RATIO (T/T)	1.01	FLOW (COEF	0.200	
PRESS RATIO (T/S)					
HORSEPOHER EXIT MACH NUMBER	15. 0.03				
SPECIFIC SPEED					
SPECIFIC DIAMETER					
**********			********		
* 02 TURBINE *			02 PUMP *		
EFFICIENCY (T/T)			********		
EFFICIENCY (T/S)		HORSEP	ENCY	0.730 307.	
SPEED (RPM)			(RPM)	82994.	
HORSEPOHER	307.	SS SPE		21095.	
MEAN DIA (IN)	3.06	S SPEE		1929.	
EFF AREA (IN2)		HEAD	(FT) (IN)	4595.	
U/C (ACTUAL)		DIA.		1.64	
	1146.	TIP SP		593.	
STAGES GAMMA	1 1.44	VOL. F		168.	
PRESS RATIO (T/T)		HEAD C FLOW C		0.420 0.159	
PRESS RATIO (T/S)	1.13		ER RATIO	0.159	
EXIT MACH NUMBER	0.06			.49E+06	
SPECIFIC SPEED	27.29		DIAMETER	18.00	
SPECIFIC DIAMETER	2.47				

TABLE 36. — SPLIT-EXPANDER ENGINE — 25,000 LBF THRUST (COPPER GROOVED CHAMBER)

			E PARAMETER		
				1554.4	
	BER PRESSI ENGINE THE			1559.9 25000.	
	L ENGINE			52.08	
	VAC. ISP			480.0	
	AT AREA			7.83	
	LE AREA RA			1030.0	
	LE EXIT D			99.88 6.00	
ETA		- 64110		0.993	
	BER COOLA	NT DP		539.	
	BER COOLA			905.	
NO22	LE/CHAMBE	3 0		12485.	
			CONDITIONS		
	*****		*********	***	
			NDITIONS *		
MOITATE	PRESS		FLOH	ENTHALPY	DENSITY
B.P. INLET B.P. EXIT	18.6 100.8	37.4 38.5	7 - 45 7 - 45	-107.5 -103.0	4.37 4.39
PUMP INLET	100.8	38.5	7.45	-103.0	4.39
1ST STAGE EXIT	2195.6	67.8	7.45	27.4	4,44
	2151.7	68.2	3.72	27.5	4.41
JBV EXIT	1828.9	70.8	3.72	27.5	4.19 4.47
2ND STAGE EXIT PUMP EXIT	3396.2	84.1	3.72 3.72	102.2 175.3	4.51
	4537.7	99.8 100.2	3.72	175.3	4.49
COOLANT EXIT	3998.5	1004.9	3.72	3528.3	0.68
TBV INLET	3958.5 1838.3 3958.5 3489.3 3489.3	1005.2	0.19	3528.3	0.67
TBV EXIT	1838.3	1019.9	0.19 3.54	3528.3 3528.3	0.32 0.67
O2 TRB INLET O2 TRB EXIT	3958.5 3489.3	978.6	3.54	3423.9	0.62
H2 TRB INLET	3489.3	978.6	3.54	3423.9	0.62
H2 TRB EXIT	1949.5	866.0	3.54	2993.7	0.40
H2 TRB DIFFUSER	1928.6	866.1	3.54	2993.7	0.40 0.40
H2 BST TRB IN	1909.4	866.1	3.54 3.54	2993.7 2984.1	0.40
H2 TRB DIFFUSER H2 BST TRB IN H2 BST TRB OUT H2 BST TRB DIFF	1880.0	866.1 863.7 863.8	3.54 3.54	2984-1	0.39
O2 RST TOR IN	1861.2	863.7	3.54	2984.1	0.38
02 BST TRB OUT 02 BST TRB DIFF H2 TANK PRESS GOX HEAT EXCH IN	1848.3	862.5	3.54	2979.0	0.38
02 BST TRB DIFF	1847.5	862.5	3.54 0.0068 3.72 3.72	2979.0 3006.4	0.38 0.0040
COY HEAT FYCH IN	1838.3	870.4	3.72	3006.4	0.38
GOX HEAT EXCH OUT	1829.1	869.6	3.72	3003.7	0.38
MIXER HOT IN	1829.1	869.6	3 72	3003.7	0.38
MIXER COLD IN	1828.9	70.8	3.72	27.5 1514.2	4.19 0.67
MIXER OUT FSOV INLET	1737.6 1737.6	454.0 454.0	7.44 7.44	1514.2	0.67
SECV EXIT	1694.2	454.1	7.44	1514.2	0.65
CHAMBER INJ	1659.6	454.2	7.44	1514.2	0.64
CHAMBER	1559.9				
	= OXY	EN SYSTEM	CONDITIONS	FORTUM DV	DENSITY
STATION B.P. INLET	PRESS 16.0	162.7	44.7	ENTHALPY 61.1	71.17
0 0 EVIT	175 (147 2	44.7	61.5	71.20
PUMP INLET PUMP EXIT	135.6	163.2	44.7	61.5	71.20
PUMP EXIT	2526.3	174.3	44.7 0.076	69.7	71.68
UZ TAME PRESS	10.0	400.0		204.7 69.7	0.12 71.64
OCV INLET OCV EXIT	2501.1 1750.8	174.4 177.2	44.6 44.6	69.7	70.47
CHAMBER INJ	1715.9	177.4	44.6	69.7	70.41
CHAMBER	1559.9				
	1	VALVE DA	TA =		
VALVE	DELTA P	AREA	FLON	% BYPASS	
JBV	323.		3.72	50.00	
TBV	2120.	0.01	0.19	5.00	
FSOV OCV	43. 750.	2.02 0.29	7.44 44.64		
~ ₹					
	•	INJECTOR	DATA =		
INJECTOR	DELTA P	AREA	FLOM	VELOCITY.	
FUEL	117.	1.39	7.44	1206.29	
FOX	173.	0.64	44.64	143.26	

TABLE 36. — SPLIT-EXPANDER ENGINE — 25,000 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

		Y PERFORMANCE D			
***	*********	**********			
######################################			********		
" LE BOOZI LOKBY	_		H2 BOOST PL		
EFFICIENCY (T/T)	0.873		IENCY	0.765	
	0.685		POHER	48.	
SPEED (RPM) 4 MEAN DIA (IN)			(RPM)	41343.	
	2.12 1.68	S SPE HEAD		3045. 27 00 .	
U/C (ACTUAL)		DIA.		2.43	
	469.		PEED	439.	
STAGES GAMMA	1	VOL. HEAD	FLON	761.	
PRESS RATIO (T/T)			COEF	0.450 0.2 9 1	
	1.02				
HORSEPONER	48.				
	0.07 14.44				
	0.75				

# H2 TURBINE #			* H2 PUMP		
					STAGE THREE
			******	*******	********
		EFFICIENCY	8.672	0.668	
SPEED (RPH) 125		HORSEPOHER SPEED (RPM)	1375. 125000.	394. 125 00 0.	385. 125000
		SS SPEED	11322.	123000.	113000.
	3.13	S SPEED	813.	874.	883.
		EAD (FT)	68187.	38830.	38091.
U/C (ACTUAL) 0 MAX TIP SPEED 1		DIA. (IN) TIP SPEED	3.70 2019.	2.87 1566.	2.87 1565.
		/OL. FLOH	754.	374.	371.
		EAD COEF	8.538	0.510	0.500
		FLOW COEF	0.098		
EXIT MACH NUMBER	0.13	DIAMETER RATIO BEARING DN			
SPECIFIC SPEED 3	6.39	SHAFT DIAMETER			
SPECIFIC DIAMETER	2.04				
**********		***			
# 02 BOOST TURBIN	E =		02 BOOST PU		
***********			********		
EFFICIENCY (T/T) 0 EFFICIENCY (T/S) 0		EFFIC: HORSEF	TENCY	0.764 26.	
SPEED (RPM) 11			(RPH)	11055.	
	5.82	S SPEE		3026.	
	2.32	HEAD	(FT) (IN)	242.	
	.553 302.	TIP SF		2.72 132.	
STAGES	1	VOL. F		282.	
	1.44	HEAD (0.450	
	1.01 1.01	FLOH C	COEF	0.200	
	26.				
	0.03				
	5.25				
SPECIFIC DIAMETER	1.48				
**********			******		
# 02 TURBINE #			02 PUMP #		
EFFICIENCY (T/T) 0	0£7		ENCY	0.747	
EFFICIENCY (T/S) 0			POMER	0.747 522.	
SPEED (RPM) 650				65070.	
	522.	SS SPE		21352.	
	3.13 0.30	S SPEE	D	1686. 4861.	
U/C (ACTUAL) 0.		DIA.	(FT) (IN)	2.12	
MAX TIP SPEED	939.	TIP SP	EED	602.	
	2	VOL. F		288.	
	l.44 l.13	HEAD C		0.426	
	l . 13 l . 14		ER RATIO	0.157 0.684	
EXIT MACH NUMBER (0.07		IG DN 1		
SPECIFIC SPEED 43		SHAFT	DIAMETER	22.00	
SPECIFIC DIAMETER 1	1.80				

TABLE 37. — SPLIT-EXPANDER ENGINE — 37,500 LBF THRUST (COPPER GROOVED CHAMBER)

**	ENGINE PI		PARAMETER		
•		· ·		1465.3	
	IBER PRESSU ENGINE THR			37500.	
TOTA	L ENGINE FI			78.13	
	VAC. ISP			480.0 12.51	
	AT AREA LE AREA RA	TIO		1000.0	
NOZZ	LE EXIT DI	AMETER		126.19	
	NE MIXTURE	RATIO		6.00 0.993	
ETA CHAR	C# IBER COOLAN	TDP		484.	
	BER COOLAN			784.	
NOZZ	LE/CHAMBER	Q		16332.	
			CONDITIONS	***	
	# FUEL	SYSTEM CO	NDITIONS .		
STATION	PRESS			ENTHALPY	DENS I TY 4 . 3 7
B.P. IMLET B.P. EXIT	18.6 100.8	37.4 38.5	11.17 11.17	-107.5 -103.0	4.39
PUMP INLET	100.8	38.5	11.17	-103.0	4.39
IST STAGE EXIT		63.4	11.17	12.4	4.50 4.47
JBV INLET JBV EXIT	2021.5	63.8 66.5	5.59 5.59	12.4 12.4	4.27
2ND STAGE EXIT	1718.2 3172.9	76.9	5.59	77.0	4.56
PUMP EXIT	4283.4	90.1	5.59	140.8	4.61
COOLANT INLET	4240.6	90.5 874.3	5.59 5.59	140.8 3064.3	4.59 0.73
COOLANT EXIT TBV INLET	3756.2 3718.6	874.5	0.28	3064.3	0.72
TBV EXIT	1726.8	887.6	0.28	3064.3	0.35
02 TRB INLET	3718.6	874.5 850.4	5.31 5.31	3064.3 2968.4	0.72
02 TRB EXIT	3257.5 3257.5	850.4	5.31	2968.4	0.66
H2 TRB INLET H2 TRB EXIT	1841.2	752.7	5.31	2590.3	0.43
HE TRB DIFFUSER	1817.0	752.9	5.31	2590.3 2590.3	0.43
HE BST TRB IN HE BST TRB OUT	1798.8 1772.8	752.9 750.4	5.31 5.31	2580.7	0.42
HE BST TRB DIFF		750.5	5.31	2580.7	0.42
DZ BST TRB IN	1750.1	750.6	5.31	2580.7 2575.6	0.42
02 BST TRB OUT 02 BST TRB DIFF	1736.2 1735.4	749.2 749.2	5.31 5.31	2575.6	0.41
HZ TANK PRESS		766.5	0.0117	2600.0	0.0046
GOX HEAT EXCH IN	1726.8	756.2	5.57	2600.0	0.41
GOX HEAT EXCH OU MIXER HOT IN		755.5 755.5	5.57 5.57	2597.2 2597.2	0.41
HIXER COLD IN	1718.2	66.5	5.59	12.4	4.27
MIXER OUT	1632.2	398.8	11.16	1303.5	0.71
FSOV INLET FSOV EXIT	1632.2 1591.4	398.8 398.9	11.16 11.16	1303.5 1303.5	0.71
CHAMBER INJ	1559.0	399.0			0.68
CHAMBER	1465.3				
		EN SYSTEM	CONDITION	5 *	DENS1T
STATION B.P. INLET	PRESS 14.0	1/2 7	471	ENTHALPY 61.1	71.17
B.P. EXIT	16.0 135.6	163.2	67.1	61.1 61.5	71.20
PUMP INLET	135.4	163.2	67.1	61.5	71.20
PUMP EXIT	2373.1	173.2 400.0	67.1 0.113	69.0 204.7	71.70 0.12
02 TANK PRESS 0CV INLET	16.0 2349.3	173.3	67.0	69.0	71.66
DCV EXIT	1644.5	176.0	67.0	69.0	70.56
CHAMBER INJ	1611.8	176.1	67.0	69.0	70.51
CHAMBER	1465.3				
		WALVE DA	ATA =		
VALVE	DELTA P	AREA	FLON	% BYPASS	
J5V	303.	0.23	5.59	50.00 5.00	
TBV FSOV	1992. 41.	0.02 3.02	0.29 11.16	5.00	
DCA DCA	705.	8.45	66.97		

INJECTOR

FUEL

LCX

DELTA P

110.

. INJECTOR DATA .

FLOH

11.16

66.97

AREA

2.08

VELOCITY

1130.27

138.75

TABLE 37. — SPLIT-EXPANDER ENGINE — 37,500 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

*******	有水泥泥 医甲苯苯苯苯磺胺 化铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁铁	
 TURBOMACHI 	NERY PERFORMANCE DATA #	

	*******	****
4 H2 BOOST TURBINE #	* H2 BOOST P	
	*******	****
EFFICIENCY (1/T) 0.885 EFFICIENCY (1/S) 0.703	EFFICIENCY	0.765
	HORSEPOHER	72.
SPEED (RPM) 33752. MEAN DIA (IN) 2.60	SPEED (RPM)	33752.
EFF AREA (IN2) 2.34	S SPEED	3046.
U/C (ACTUAL) 0.553	HEAD (FT)	2700.
MAX TIP SPEED 465.	DIA. (IN)	2.98
STAGES 1	TIP SPEED VOL. FLON	439.
GAMMA 1.39	HEAD COEF	1142.
PRESS RATIO (T/T) 1.01	FLOH COEF	0.450
PRESS RATIO (T/S) 1.02	TEUM COEF	0.201
HORSEPOWER 72.		
EXIT MACH NUMBER 0.07		
SPECIFIC SPEED 112.18		
SPECIFIC DIAMETER 0.77		
斯森伊莱州州 机机械 化水油 电水水	****	
# H2 TURBINE #	# H2 PUMP	•
*********	********	
	STAGE ONE	STAGE THO STAGE THREE
EECTOTION	新疆级数据和证券	*******
EFFICIENCY (T/T) 0.856	EFFICIENCY 0.704	
EFFICIENCY (T/S) 0.832	HORSEPOHER 1824.	511. 505.
SPEED (RPM) 107143.	SPEED (RPM) 107143.	107143. 107143.
HORSEPOHER 2839. MEAN DIA. (IN) 3 61	SS SPEED 11888.	
	S_SPEED 897.	976. 979.
EFF AREA (IN2) 0.34 U/C (ACTUAL) 0.548	HEAD (FT) 63208.	
	DIA. (IN) 4.17	
MAX TIP SPEED 1771. STAGES 2	TIP SPEED 1950.	1491. 1491.
GAHMA 1.39	VOL. FLOW 1114, HEAD COEF 0.535	550. 544.
PRESS RATIO (T/T) 1.77	- · · · · · · · · · · · · · · · · · · ·	0.511 0.505
PRESS RATIO (T/S) 1.80	FLOW COEF 0.104 DIAMETER RATIO 0.364	
EXIT MACH NUMBER 0.15	BEARING DN 3.00E+06	
SPECIFIC SPEED 41.14	SHAFT DIAMETER 28.00	
SPECIFIC DIAMETER 1.92	28.00	
医甲卡氏试验 医阴茎状状状 化自然放弃法	有用有品质的有效的现在分	***
# 02 BOOST TURBINE #	# 02 BOOST PU	HP =
美国用收款货票款贷款收益金额股份金额	********	****
EFFICIENCY (T/T) 0.876	EFFICIENCY	0.764
EFFICIENCY (T/S) 0.812	HORSEPONER	39.
SPEED (RPM) 9026.	SPEED (RPM)	9026.
MEAN DIA (IN) 7.12 왕조 (INC) 3.24	S SPEED	3026.
	HEAD (FT)	242.
U/C (ACTUAL) 0.553 MAX TIP SPEED 301.	DIA. (IN)	3.34
STAGES 1	TIP SPEED	132.
GAMMA 1.39	VOL. FLON	423.
PRESS RATIO (T/T) 1.01	HEAD COEF FLOH COEF	0.450
PRESS RATIO (T/S) 1.01	ream coer	0.200
HORSEPOWER 39.		
EXIT MACH NUMBER 0.03		
SPECIFIC SPEED 53.61		
SPECIFIC DIAMETER 1.53		
有非常有效的现在分词	******	
# 02 TURBINE #	# 02 PUMP #	
*********	******	
EFFICIENCY (T/T) 0.857		0.760
EFFICIENCY (T/S) 0.833	HORSEPOMER	721.
SPEED (RPM) 51439.	SPEED (RPM)	51439.
HORSEPOWER 721.	SS SPEED	20673.
MEAN DIA (IN) 3.61 EFF AREA (IN2) 0.44	2 SPEED	1921.
	HEAD (FT) DIA. (IN)	4492.
U/C (ACTUAL) 0.522 MAX TIP SPEED 858.		2.58
	TIP SPEED	579.
•	VOL. FLOW	420.
PRESS RATIO (T/T) 1.14	HEAD COEF	0.431
PRESS RATIO (1/5) 1.15	FLOH COEF	0.159
EXIT MACH NUMBER 0.07	DIAMETER RATIO BEARING ON 1.	0.685
SPECIFIC SPEED 44.05	SHAFT DIAMETER	
SPECIFIC DIAMETER 1.72	See I DIANCIEK	28.00
· -		

TABLE 38. — SPLIT-EXPANDER ENGINE — 50,000 LBF THRUST (COPPER GROOVED CHAMBER)

ENGINE PERFORMANCE PARAMETERS

			E PAKAMETER *******		
	nca 005001	nr.		1406.6	
	BER PRESSU			50000.	
	ENGINE THR L ENGINE F			104.18	
	VAC. ISP	CON MAIL		480.0	
	AT AREA			17.36	
	LE AREA RA	TIO		1000.0	
NOZZ	LE EXIT DI	AMETER		148.69	
	NE HIXTURE	RATIO		6.00	
ETA				0.993	
	BER COOLAN BER COOLAN			448. 716.	
	LE/CHAMBER			19957.	
		-			
			CONDITIONS		

			NDITIONS *		
MOITATE	PRESS			ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	14.90	-107.5 -103.0	4.37 4.39
B.P. EXIT	101.0	38.5 38.5	14.90 14.90	-103.6	4.39
PUMP INLET 1ST STAGE EXIT	101.0	60.7	14.90	3.1	4.54
	1940.5	61.1	7.45	3.0	4.52
JBV EXIT	1649.4	63.7	7.45	3.0	4.32
2ND STAGE EXIT	3033.6	72.5	7.45	61.7	4.61
	4094.4	84.2	7.45	119.9	4.67
COOLANT INLET	4053.4	84.6	7.45	119.9	4.65
COOLANT EXIT	3605.8 3569.7 1658.4	800.5	7.45	2798.8	0.77 0.76
TBV INLET	3569.7	800.7	0.37 0.37	2798.8 2798.8	0.37
TBV EXIT D2 TRB INLET	3569.7	812.8 800.7	7.08	2798.8	0.76
	3110.4	778.1	7.08	2708.6	0.69
H2 TRR INEFT	3110.4	778.1	7.08	2708.0	0.69
H2 TRB EXIT	1775.1	688.3	7.08	2361.8	0.46
H2 TRB DIFFUSER	1748.7	688.4	7.08	2361.8	0.45
H2 TRB EXIT H2 TRB DIFFUSER H2 BST TRB IN	1731.2	688.4	7.08	2361.8	0.45
HZ 821 (KB UU)	1/04.0	685.9	7.08	2352.2	0.44
H2 BST TRB DIFF D2 BST TRB IN D2 BST TRB OUT D2 BST TRB DIFF H2 TANK PRESS GOX HEAT EXCH IN	1699.0	686.0 686.1	7.08 7.08	2 352.2 2352. 2	0.44
UZ BSI IKB IM	1667.6	684.7	7.08	2347.1	0.44
D2 BST TRB DIFF	1666.7	684.7	7.08	2347.1	0.43
H2 TANK PRESS	18.6	700.4	0.0171	2369.7	6.0056
GOX HEAT EXCH IN	1658.4	691.2	7.43	2369.7	0.43
GOX HEAT EXCH OUT	1650.1	690.4	7.43	2366.9	0.43
HIXER HOT IN		690.4	7.43	2366.9	0.43 4.32
MIXER COLD IN	1649.4	63.7 368.3	7.45 14.88	3.0 1183.6	0.74
	1567.6 1567.6	368.3	14.88	1183.6	0.74
	1528.4	368.3	14.88	1183.4	0.72
CHAMBER INJ	1497.2	368.4	14.88	1183.6	0.71
	1406.6				
	= 0VV	EN SYSTEM	CONDITIONS		
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	89.4	61.1	71.17
B.P. EXIT	135.6	163.2	89.4	61.5	71.20
PUMP INLET	135.6	163.2	89.4	61.5	71.20
PUMP EXIT	2278.1	172.6	89.4	68.6	71.71
02 TANK PRESS OCV INLET	16.0	400.0	0.151	204.7 68.6	0.12 71.67
	1578.7	172.7 175.3	89.3 89.3	68.4	70.62
OCV EXIT CHAMBER INJ	1547.3	175.4	89.3	68.6	70.57
CHAMBER	1406.6	.,,,,			
		VALVE DA	.TA =		
	DELTA D	ADCA	FLOM	* BYPASS	
VALVE	DELTA P	AREA 0.31	7.45	50.00	
TBV	291. 1911.	0.02	0.37	5.00	
IBV FSOV	39.	4.03	14.88	2	
OCV	677.	0.61	89.29		
		IN SECTOR	DATA -		
	•	INJECTOR	DATA *		
INJECTOR	DELTA P	AREA	FLON	VELOCITY	
FUEL	106.	2.77	14.88	1092.16	
LOX	156.	1.34	89.29	135.89	

TABLE 38. — SPLIT-EXPANDER ENGINE — 50,000 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

		HEEGEREEREEREEREEREEREEREEREEREEREEREEREE			
		MINERT PERFORMANCE :			

# H2 BOOST TU	RBINE .		H2 BOOST P		
********	****				
EFFICIENCY (T/T)			CIENCY	0.765	
EFFICIENCY (T/S)			EPOHER	96.	
	29253.		D (RPM)	29253.	
MEAN DIA (IN) EFF AREA (IN2)		S SPE		3044.	
U/C (ACTUAL)		HEAD DIA.		2705. 3.44	
MAX TIP SPEED	464.		SPEED	440.	
STAGES	1		FLON	1523.	
GAMMA	1.39	HEAD	COEF	0.450	
PRESS RATIO (T/T)		FLON	COEF	0.201	
PRESS RATIO (T/S)					
HORSEPOHER EXIT MACH NUMBER	96. 0.07				
SPECIFIC SPEED					
SPECIFIC DIAMETER					
********			*******	•	
* H2 TURBINE			# H2 PUMP		
*********	•		*****		
					STAGE THREE
EFFICIENCY (T/T)	0.871	EFFICIENCY	0.729		
EFFICIENCY (T/S)					
SPEED (RPM)		SPEED (RPM)	100000.	618. 100000.	100000.
HORSEPOHER	3466.	SS SPEED	12796.		
MEAN DIA. (IN)		S SPEED	999.	1097.	1095.
EFF AREA (IN2)		HEAD (FT)	60136.	33143.	32916.
U/C (ACTUAL) MAX TIP SPEED	1715.	DIA. (IN) TIP SPEED	4.39	3.33	
STAGES	2	VOL. FLOH	1917. 1472.	1455. 726.	1455. 716.
GAMMA	1.39	HEAD COEF	0.527	0.504	
PRESS RATIO (T/T)		FLOH COEF	0.110		****
PRESS RATIO (T/S)	1.79	DIAMETER RATIO	0.395		
EXIT MACH NUMBER	0.16	BEARING DH			
SPECIFIC SPEED		SHAFT DIAMETER	30.00		
SPECIFIC DIAMETER	1.73				
********	*****		*****		
# 02 BOOST TUR	BINE .		02 BOOST PU		

EFFICIENCY (T/T)		EFF1C	IENCY	0.764	
EFFICIENCY (T/S)			POMER	51.	
SPEED (RPM) MEAN DIA (IN)			(RPM)	7816.	
MEAN DIA (IN)	8.22 4.12	\$ SPEI HEAD		3026. 242.	
U/C (ACTUAL)		DIA.	(IN)	3.85	
MAX TIP SPEED	309.	TIP SI		132.	
STAGES	1	VOL. F	FLON	564.	
GAMMA	1.39	HEAD (0.450	
PRESS RATIO (T/T)		FLON (COEF	0.200	
PRESS RATIO (T/S) HORSEPOWER	1.01 51.				
EXIT MACH NUMBER	0.03				
SPECIFIC SPEED	52.65				
SPECIFIC DIAMETER	1.56				
*********			********		
# 02 TURBINE #			02 PUMP #		
EFFICIENCY (T/T)			ENCY	0.769	
EFFICIENCY (T/S)			OMER	910.	
SPEED (RPM)	43615.	SPEED	(RPM)	43615.	
HORSEPOHER	910.	SS SPE	ED	20241.	
MEAN DIA (IN)		S SPEE	D	1943.	
EFF AREA (IN2)		HEAD	(FT) (IN)	4300.	
U/C (ACTUAL) MAX TIP SPEED	0.468 756.			2.97	
STAGES	756. 2	TIP SP VOL. F		565.	
GAMMA	1.39	VUL. P HEAD O		560. 0.434	
PRESS RATIO (T/T)	1.15	FLOH C		0.454	
PRESS RATIO (T/S)			ER RATIO	0.686	
EXIT MACH NUMBER	0.07	BEAR IN	IG DN 1	.31E+06	
SPECIFIC SPEED		SHAFT	DIAMETER	30.00	
SPECIFIC DIAMETER	1.57				

TABLE 39. - DUAL-EXPANDER ENGINE - 7500 LBF THRUST (COPPER **GROOVED CHAMBER)**

FUEL

LOX

			E PARAMETER		
	MBER PRESSU			1300.3	
	ENGINE THR AL ENGINE F			7500. 15.63	
DEL. VAC. ISP				479.9	
	OAT AREA			2.82	
	ZLE AREA RA			1000.0	
	ZLE EXIT DI INE MIXTURE			59.88 6.00	
	C*	, KAI 10		0.993	
	MBER COOLAN	IT DP		407.	
	MBER COOLAN			439.	
	ZLE COOLAN ZLE COOLAN			184. 524.	
	MBER Q (HYD		LED)	3787.	
	ZLE Q (OXYG			2435.	
			CONDITIONS	***	
			NDITIONS .	ENTUAL BY	DELECT TV
STATION B.P. INLET	PRESS 18.6	TEMP 37.4	FLOW 2.24	ENTHALPY -107.5	DENS1TY 4.37
B.P. EXIT	101.1	38.5	2.24	-103.0	4.39
PUMP INLET	101.1	38.5	2.24	-103.0	4.39
IST STAGE EXIT		65.0	2.24	8.6 116.4	4.32 4.31
PUMP EXIT COOLANT INLET	3311.8 3278.7	89.8 90.0	2.24	116.4	4.30
COOLANT EXIT	2871.6	529.5	2.24	1809.9	0.91
TBV INLET	2842.9	529.6	0.11	1809.9	0.90
TBV EXIT H2 TRB INLET H2 TRB EXIT	1448.4	535.9	0.11	1809.9	0.48
H2 TRB INLET	2842.9	529.6 472.1	2.12 2.12	1809.9 1579.0	0.90 0.57
M2 TRE EXII	1532.4	472.1	2.12	1579.0	0.56
H2 TRB DIFFUSER H2 BST TRB IN H2 BST TRB OUT H2 BST TRB DIFF H2 TANK PRESS	1484.6	472.2	2.12	1579.0	0.56
HZ BST TRB OUT	1463.1	471.0	2.12	1574.2	0.55
H2 BST TRB DIFF	1448.4	471.1	2.12	1574.2 1586.0	0.54 0.0073
FSOV INLET	18.6	479.0	0.0037 2.23	1586.0	0.0073
FSOV EXIT	1412.2	474.4	2.23	1586.0	0.53
CHAMBER INJ	1383.4	474.5	2.23	1586.0	0.52
CHAMBER	1300.3				
HOITATE	PACCE PACCE	EN SYSTEM	CONDITIONS	* ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	13.4	61.1	71.17
B.P. EXIT	135.6	163.2	13.4	61.5	71.20
PUMP INLET	135.6 4749.6	163.2	13.4	61.5	71.20
PUMP EXIT	4749.6	187.8 188.0	13.4 13.4	78.7 78.7	71.57 71.50
COOLANT INLET	4702.1 4518.5	711.9	13.4	260.2	17.66
OTBY INLET	4518.5	711.9	0.6	260.2	17.66
OTBV EXIT	2194.9	690.5	0.6	260.2	9.39
02 TRB INLET 02 TRB EXIT	4518.5	711.9	11.5 11.5	260.2 240.1	17.66 11.77
OZ IRB EXII	2397.7	615.6 612.3	11.5	240.1	10.87
OZ BST TRB IN	4518.5	711.9	1 - 3	260.2	17.66
02 TRB DIFFUSER 02 BST TRB IN 02 BST TRB OUT	4485.7	697.0	1.3	256.1	18.01
OZ BST TRB DIFF	4484.3	697.0	1.3	256.1	18.00 18.00
OBTV INLET OBTV EXIT	4484.3 2194.9	697.0 674.5	1.3	256.1 256.1	9.66
MIXER	2194.9	622.0	13.4	242.6	10.66
02 TANK PRESS		572.9	0.016	242.6	0.08
OCV INLET	2085.2	620.2	13.4	242.6	10.18
OCV EXIT	1459.6	608.7	13.4 13.4	242.6 242.6	7.29 7.16
CHAMBER INJ CHAMBER	1430.6 1300.3	408.1	13.4	242.0	7.14
		VALVE DA	TA =		
VALVE	DELTA P		FLOH	% BYPASS	
OTBV	2324.	0.01	0.60	5.00 5.00	
TBV FSOV	1394. 36.	0.01 0.74	0.11 2.23	5.00	
OBTV	2289.	0.01	1.34		
ocv	626.		13.39		
	•	INJECTOR	DATA #		
INJECTOR	DELTA P	AREA	FLOH	VELOCITY	
FIFE	98.			1217.82	

0.51

0.66

2.23

1217.82 410.59

98. 145.

TABLE 39. — DUAL-EXPANDER ENGINE — 7500 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

		HINERY PERFORMANCE			
*********		************			
# H2 BOOST T					
- 12 00031 1			HC BOOST		
EFFICIENCY (T/T			CIENCY	0.76	ς.
EFFICIENCY (T/S	0.368		EPO LE R	14	
SPEED (RPM	75548.		D (RPM)		
MEAN DIA (IN		S SP		3043	
EFF AREA (IN2		HEAD	(FT)	2708	
U/C (ACTUAL		DIA.		1.3	5
MAX TIP SPEED STAGES	3 9 2.		SPEED	440	
GAMMA	1 1.40		FLON	229.	
PRESS RATIO (T/T)			කණ කණ	0.450	
PRESS RATIO (T/S		, con		0.20	•
HORSEPOHER	14.				
EXIT MACH NUMBER	0.12				
SPECIFIC SPEED	143.69				
SPECIFIC DIAMETER	0.52				

* H2 TURBINE			# H2 PUM		
	•		******		
			STAGE ON		AGE THO
EFFICIENCY (T/T)	0.781	EFFICIENCY	0.623		*******
EFFICIENCY (T/S)		HORSEPONER	353.		0.628 341.
	187500.	SPEED (RPM)	187500.		87500.
HORSEPOHER	694.	SS SPEED	9288.		07300.
MEAN DIA. (IN)	2.22	S SPEED	805.		822.
EFF AREA (IN2)		HEAD (FT)	54135.		52690.
U/C (ACTUAL)	0.535	DIA. (IN)	2.24		2.24
MAX TIP SPEED	1890.	TIP SPEED	1834.		1834.
STAGES	1	VOL. FLOH	232.		233.
GANNA	1.40	HEAD COEF	0.518		0.504
PRESS RATIO (T/T) PRESS RATIO (T/S)		FLON COEF	0.097		
EXIT HACH NUMBER		DIAMETER RATIO BEARING DN			
SPECIFIC SPEED	32.34	SHAFT DIAMETER			
SPECIFIC DIAMETER		SHAFT DIAMETER	16.00		
*******	****		******		
# 02 BOOST TU			CC BOOST I	PUMP #	
			********	****	
EFFICIENCY (T/T)			IE-CY	0.764	
EFFICIENCY (T/S) SPEED (RPM)	0.752 20187.		POMER	8.	
HEAN DIA (IN)		S SPE	(RPM)		
EFF AREA (IN2)		HEAD		3026. 242.	
U/C (ACTUAL)		DIA.	(IN)		
MAX TIP SPEED	263.		PEED	132.	
STAGES	ı	VOL.	FLOH	85.	
GAMMA	1.63	HEAD	COEF	0.450	
PRESS RATIO (T/T)		FLOR	COEF	0.200	
PRESS RATIO (T/S)					
HORSEPONER EXIT MACH HUMBER	8.				
SPECIFIC SPEED	0.02 41.09				
SPECIFIC DIAMETER	1.88				
a con to other len	1.00				

# 02 TURBINE #			02 PUMP		
**********				-	
	0.811	EFF IC	IE-CY	0.693	
EFFICIENCY (T/S)	0.697	HORSE	POMER	326.	
SPEED (RPM)			(RPM)	154919.	
HORSEPOHER	326.	SS SPE		27838.	
MEAN DIA (IN)		S SPEE		1502.	
EFF AREA (IN2)			(FT)	9282.	
U/C (ACTUAL)		DIA.	(IN)	1.22	
MAX TIP SPEED STAGES	640. 1	TIP SF		826.	
GAMMA	1.63	VOL. F		84.	
PRESS RATIO (T/T)	1.88	HEAD C		0.438	
PRESS RATIO (T/S)			ER RATIO	0.139 0.669	
EXIT MACH NUMBER	0.34			1.558.06	
SPECIFIC SPEED	85.40		DIAMETER		
SPECIFIC DIAMETER					
	-				

TABLE 40. - DUAL-EXPANDER ENGINE - 15,000 LBF THRUST (COPPER GROOVED CHAMBER)

INJECTOR

FUEL

LOX

	ENGINE PE		PARAMETER		
••					
	BER PRESSUE			1140.6 15000.	
	ENGINE THRI L ENGINE FL			31.24	
	VAC. ISP			479.9 6.41	
	MAT AREA "LE AREA RA"	110		1000.0	
NO22	LE EXIT DIA	METER		90.37 6.00	
ENG1 ETA	NE MIXTURE C#	RAITU		0.993	
CHW	BER COOLAN			368. 356.	
	OBER COOLAN PLE COOLAN			203.	
HOZZ	LE COOLAN	T DT		404. 6150.	
	GBER Q (HYDI ZLE Q (OXYG			3986.	
	ENGINE		CONDITIONS	***	
			DITIONS .		
STATION	PRESS 18.6	TEIP 37.4	FLOH 4.47	ENTHALPY -107.5	DENSITY 4.37
B.P. IMLET B.P. EXIT	100.8	38.5	4.47	-103.0	4.39
PUMP INLET	100.8	38.5	4.47	~103.0 -26.5	4.39 4.45
IST STAGE EXIT PUMP EXIT	1374.1 2646.2	55.4 71.6	4.47 4.47	49.2	4.50
COOLANT INLET	2619.7	71.9	4.47	49.2	4.49
COOLANT EXIT	2619.7 2252.2 2229.7	428.0 428.1	4.47 0.22	1423.6 1423.6	0.87
TBV INLET TBV EXIT	1270.6	431.0	0.22	1423.6	0.52
H2 TRB INLET H2 TRB EXIT	2229.7	428.1	4.25 4.25	1423.6 1263.4	0.88 0.61
H2 TRB EXIT	1353.4	389.1 389.2	4.25	1263.4	0.60
H2 TRB DIFFUSER H2 BST TRB IN H2 BST TRB OUT	1306.7	389.2 388.1	4.25	1263.4	0.60 0.59
		388.1 388.1	4.25 4.25	1258.6 1258.6	0.58
H2 TANK PRESS	18.6	392.3	0.0092	1266.9	0.0089
FSOV INLET	1270.6	390.2 390.3	4.47 4.47	1266.9 1266.9	0.58 0.56
H2 BST TRB DIFF H2 TANK PRESS FSOV INLET FSOV EXIT CHARBER INJ	1213.6	390.3		1266.9	0.55
CHAMBER	1140.6				
	* 0XYG	EN SYSTEM	CONDITION	ENTHALPY	DEMSITY
STATION B.P. INLET	16.0	162.7	26.8	61.1	71.17
B.P. EXIT	135.6	163.2	26.8	61.5	71.20 71.20
PUMP INLET PUMP EXIT	135.6 4682.5	163.2 185.7	26.8 26.8	61.5 77.7	71.82
COOLANT INLET	4635.7	185.9	26.8	77.7	71.75
COOLANT EXIT	4433.1	590.2 590.2	26.8 1.2	226.3 226.3	21.91 21.91
OTBV INLET	4433.1 1925.5	554.6	1.2	226.3	10.85
02 TRB INLET	4433.1	590.2	22.9	226.3 207.3	21.91 14.35
O2 TRB EXIT	2131.5	491.8 486.6	22.9 22.9	207.3	15.12
02 TRB DIFFUSER 02 BST TRB IN	4433.1	590.2	2.7	226.3	21.91
02 BST TRB OUT	4394.8	576.2 576.2	2.7 2.7	222.2 222.2	22.45 22.44
02 BST TRB DIFF OBTV INLET	4393.2	576.2	2.7	222.2	22.44
TIX3 VTBO	1925.5	539.7	2.7	222.2 209.6	11.26 12.76
MIXER 02 TANK PRESS	1925.5 16.0	494.9 422.3	26.8 0.043	209.6	0.11
OCV INLET	1829.3	492.3	26.8	209.6	12.19
OCV EXIT	1280.5 1255.0	476.2 475.3	26.8 26.8	209.6 209.6	8.77 8.60
CHAMBER INJ CHAMBER	1140.6	4.5.0	2375		
		• VALVE DA	ATA =		
VALVE	DELTA P		FLON	% BYPASS	
OTBV	2508. 959.	0.01 0.01	1.21 0.22	5.00 5.00	
TBV FSOV	32.	1.54	4.47		
OBTV	2468.		2.68 26.79		
ocv	549.				
	•	INJECTOR	DATA #	ven oce try	

AREA

1.06

DELTA P

86.

127.

FLOH 4.47 26.79

VELOCITY

TABLE 40. — DUAL-EXPANDER ENGINE — 15,000 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

	********	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	******		
		HINERY PERFORMANCE			

• H2 BOOST 1			* H2 BOOST	-	
EFFICIENCY (1/1			*******		_
EFFICIENCY (T/S			ICIENCY SEPOHER	0.76	
SPEED (RPH			ED (RPM)		•
MEAN DIA CIN			PEED	3045	
EFF AREA (IN2	1.73	HEA	0 (FT)		
	0.553		. (IN)	1.8	,
MAX TIP SPEED			SPEED	439	-
STAGES GAMMA	1 1.38		. FLOW	458	•
PRESS RATIO (T/T			COEF	0.450	
PRESS RATIO (T/S		7.00	COEF	0.20	ı
HORSEPOHER	29.				
EXIT MACH MUMBER					
SPECIFIC SPEED					
SPECIFIC DIMETER	R 0.52				
# H2 TURBINE			* H2 PUM		
*********			******		
			STAGE DN		AGE THO
			******		******
EFFICIENCY (T/T		EFFICIENCY	0.695		0.695
EFFICIENCY (T/S SPEED (RPM		HORSEPOHER	485.		479.
HORSEPOHER) 136363. 964.	SPEED (RPM) SS SPEED	136363. 9 571.		36363.
MEAN DIA. (IN		S SPEED	999.		1001.
EFF AREA (IN2		HEAD (FT)	41375.		40897.
	0.553	DIA. (IN)	2.71		2.71
HAX TIP SPEED	1653.	TIP SPEED	1612.		1612.
STAGES	1	VOL. FLOW	452.		446.
GAMMA PRESS RATIO (T/T)	1.38	HEAD COEF FLOW COEF	0.512		0.506
PRESS RATIO (T/S)		DIAMETER RATIO	0.110 0.381		
EXIT MACH NUMBER		BEARING DN			
SPECIFIC SPEED	43.19	SHAFT DIAMETER			
SPECIFIC DIMETER	1.81				

# 02 BOOST TU			O2 BOOST #		
**********			U2 BUUSI I		
EFFICIENCY (T/T)	0.808		CIENCY	0.764	
EFFICIENCY (T/S)		HORSI	EPOHER	15.	
	14271.		D (RPM)	14271.	
HEAN DIA (IN) EFF: AREA (IN2)		S SPI		3026.	
EFF-AREA (IN2) U/C (ACTUAL)		HEAD DIA.	(FT) (IN)		
MAX TIP SPEED	261.		SPEED	2.11 132.	
STAGES	1		FLOH	169.	
GANNA	1.78		COEF	0.450	
PRESS RATIO (T/T)		FLOH	COEF	0.200	
PRESS RATIO (T/S) HORSEPOHER	1.01 15.				
EXIT MACH NUMBER					
SPECIFIC SPEED	38.28				
SPECIFIC DIAMETER	2.02				
**********			******		
# 02 TURBINE			# 02 PUMP		
EFFICIENCY (T/T)		FFEIC	HARRESHEE HENCY	0.720	
EFFICIENCY (T/S)	0.718	HORSE	POMER	618.	
SPEED (RPM)	107453.	SPEED	(RPH)	107453.	
HORSEPOHER	618.		EED	27313.	
MEAN DIA (IN)	1.15	S SPE		1492.	
MEAN DIA (IN) EFF AREA (IN2) U/C (ACTUAL)	0.21	HEAD	(FT) (IN)	9114.	
U/C (ACTUAL) MAX TIP SPEED		DIA.			
STAGES	619. 1	TIP S VOL.		807.	
GAMMA	1.78	VUL. HEAD		168. 0.450	
PRESS RATIO (T/T)			COEF	0.450	
PRESS RATIO (T/S)	2.39		TER RATIO		
EXIT MACH NUMBER	0.35		NG DN		
SPECIFIC SPEED	83.84	SHAFT	DIAMETER	14.00	
SPECIFIC DIAMETER	0.98				

TABLE 41. — DUAL-EXPANDER ENGINE — 25,000 LBF THRUST (COPPER GROOVED CHAMBER)

ENGINE	PERFORMANCE	PARAMETERS
******		**********

CHAMBER PRESSURE	1108.7
VAC ENGINE THRUST	25000.
TOTAL ENGINE FLON RATE	52.10
DEL, VAC. ISP	479.9
THROAT AREA	11.00
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	118.33
ENGINE MIXTURE RATIO	6.00
ETA C#	0.993
CHAMBER COOLANT DP	308.
CHAMBER COOLANT DT	317.
NOZZLE COOLANT DP	222.
NOZZLE COOLANT DT	351.
CHAMBER Q (HYDROGEN COOLED)	9095.
NOZZLE Q (OXYGEN COOLED)	5893.
NUZZLE U TUKTGEN COCCEDI	20.00

ENGINE STATION CONDITIONS

	* FUEL	SYSTEM CO	MOITIONS #		
STATION	PRESS	TEMP	FLON	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	7.46	-107.5	4.57
B.P. EXIT	100.5	38.5	7.46	-103.0	4.59
PUMP INLET	100.5	38.5	7.46	-103.0	4.39
IST STAGE EXIT	1234.6	51.8	7.46	-39.5	4.50
PUMP EXIT	2386.6	64.6	7.46	23.9	4.59
COOLANT INLET	2362.7	64.8	7.46	23.9	4.57
COOLANT EXIT	2055.1	382.3	7.46	1243.2	0.91
TBV INLET	2034.6	382.4	0.37	1243.2	0.91
TBV EXIT	1235.1	384.2	0.37	1243.2	0.57
H2 TRB INLET	2034.6	382.4	7.09	1243.2	0.91
H2 TRB EXIT	1321.6	350.2	7.09	1109.6	0.67
H2 TRB DIFFUSER	1282.5	350.2	7.09	1109.6	0.65
H2 BST TRB IN	1269.6	350.2	7.09	1109.6	0.65
H2 BST TRB OUT	1248.5	369.1	7.09	1104.8	0.63
H2 BST TRB DIFF	1235.1	349.1	7.09	1104.8	0.63
H2 TANK PRESS	18.6	351.6	0.0173	1111.7	0.0100
	1235.1	350.8	7.44	1111.7	0.62
FSOV INLET	1204.2	350.9	7.44	1111.7	0.61
FSOV EXIT		350.9	7.44	1111.7	0.60
CHAMBER INJ	1179.7	350.7	,.44		• • • • • • • • • • • • • • • • • • • •
CHAMBER	1108.7				

	* OXYE	EN SYSTEM	CONDITIONS	S #	
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	44.7	61.1	71.17
B.P. EXIT	135.6	163.2	44.7	61.5	71.20
PUMP INLET	135.6	163.2	44.7	61.5	71.20
PUMP EXIT	4859.1	185.5	44.7	77.9	71.99
COOLANT INLET	4810.5	185.7	44.7	77.9	71.92
COOLANT EXIT	4589.0	537.0	44.7	209.7	25.58
OTBY INLET	4589.0	537.0	2.0	209.7	25.58
OTBV EXIT	1871.0	495.6	2.0	209.7	12.43
OZ TRB INLET	4589.0	537.0	38.3	209.7	25.58
OZ TRB EXIT	2078.1	436.8	38.3	190.4	17.06
02 TRB DIFFUSER	1871.0	430.5	38.3	190.4	15.62
OZ BST TRB IN	4589.0	537.0	4.5	209.7	25.58
02 BST TRB OUT	4547.3	523.7	4.5	205.6	26.34
OZ BST TRB DIFF	4545.7	523.7	4.5	205.6	26.33
OBTY INLET	4545.7	523.7	4.5	205.6	26.33
OBTV EXIT	1871.0	479.4	4.5	205.6	13.05
MIXER	1871.0	437.7	44.7	192.8	15.15
02 TANK PRESS	16.0	345.2	0.087	192.8	0.14
OCV INLET	1777.5	434.7	44.7	192.8	14.49
OCV EXIT	1244.2	415.1	44.7	192.B	10.50
CHAMBER INJ	1219.5	414.0	44.7	192.8	10.31
CHAMBER	1108.7				

. VALVE DATA .

VALVE OTBV TBV FSOV OBTV	DELTA P 2718. 799. 31. 2675.	AREA 0.02 0.03 2.50 0.04	FLON 2.01 0.37 7.44 4.47	% BYPASS 5.00 5.00
FSOV	31.	2.50	7.44	5.00

* INJECTOR DATA *

INJECTOR	DELTA P	AREA	FLOH	VELOC1TY
FUEL	84.	1.72	7.44	1043.94
LOX	123.	l.98	44.66	315.55

TABLE 41. — DUAL-EXPANDER ENGINE — 25,000 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

		HENERY PERFORMANCE		

*********		•	********	
# H2 BOOST TI			H2 BOOST	
EFFICIENCY (T/T			CIENCY	
EFFICIENCY (T/S) 0.443		EPOMER	0.766 48.
	1 41232.		D (RPM)	
MEAN DIA (IN EFF AREA (IN2)		S SP		3049.
U/C (ACTUAL)			(FT)	
MAX TIP SPEED	376.	DIA.	(IN) SPEED	2.44 439.
STAGES	1		FLON	763.
GAMMA	1.36		COEF	0.450
PRESS RATIO (T/T) PRESS RATIO (T/S)		FLOW	COEF	0.201
HORSEPOHER) 1.03 48.			
EXIT MACH NUMBER	0.13			
SPECIFIC SPEED				
SPECIFIC DIAMETER	0.52			

# H2 TURBINE	-		# H2 PUM	
******			******	
			STAGE ON	E STAGE TWO
EFFICIENCY (T/T)	0 070	FFFIGIEN	*******	
EFFICIENCY (T/S)		EFFICIENCY HORSEPONER	0.740 6 70.	
	125000.	SPEED (RPM)	125000.	
	1340.	SS SPEED	11364.	123000.
MEAN DIA. (IN) EFF AREA (IN2)	2.62	S SPEED	1290.	
U/C (ACTUAL)		HEAD (FT) Dia. (In)	36570.	
MAX TIP SPEED	1549.	TIP SPEED	2.85 1556.	
STAGES	1	VOL. FLON	744.	730.
GAMMA	1.36	HEAD COEF	0.486	
PRESS RATIO (T/T) PRESS RATIO (T/S)		FLOW COEF	0.128	
EXIT MACH NUMBER	0.23	DIAMETER RATIO BEARING DN		
SPECIFIC SPEED	58.33	SHAFT DIAMETER		
SPECIFIC DIAMETER	1.41			
*****	*****			
# 02 BOOST TUR			02 BOOST P	
******			*******	
EFFICIENCY (T/T)	0.844	EFF1C		0.764
EFFICIENCY (T/S) SPEED (RPM)	11052.		POHER	26.
MEAN DIA (IN)		SPEED S SPEE	(RPM)	11052. 3026.
EFF AREA (IN2)	0.21	HEAD	(FT)	242.
LL/C (ACTUAL)			(IN)	2.72
MAX TIP SPEED STAGES	260. 1	TIP SI		132.
GAMMA	1.91	VOL. F		282.
PRESS RATIO (T/T)	1.01	FLOH (0.450 0.200
PRESS RATIO (1/S)				
HORSEPOWER EXIT MACH HUMBER	26. 0.02			
SPECIFIC SPEED	37.16			
SPECIFIC DIAMETER	2.13			
4 02 TURBINE #			********	
. 05 1000145 -			02 PUMP *	
EFFICIENCY (T/T)	0.877		ENCY	0.736
EFFICIENCY (T/S)	0.767	HORSEP		1044.
SPEED (RPH) HORSEPOHER		SPEED	(RPH)	83640.
	1044. 1.49	SS SPE	ED	27451.
MEAN DIA (IN) EFF AREA (IN2)	0.31	S SPEE HEAD		1458. 9445.
U/C (ACTUAL)			(IN)	2.22
MAX TIP SPEED	617.	TIP SP	EED	812.
STAGES GAMMA	1	VOL. FI		279.
PRESS RATIO (T/T)	1.91 2.21	HEAD CI FLOH CI		0.461
PRESS RATIO (T/S)	2.55		DEF ER RATIO	0.137 0.670
EXIT MACH NUMBER	0.36		G DN	
SPECIFIC SPEED	81.81	SHAFT I	DIAMETER	18.00
SPECIFIC DIAMETER	1.03			

TABLE 42. — DUAL-EXPANDER ENGINE — 37,500 LBF THRUST (COPPER GROOVED CHAMBER)

	ENGINE PE		PARAMETERS		
##	*******				
CHAM	BER PRESSUR	Ε		1049.9	
	ENGINE THRU			37500. 78.15	
	L ENGINE FL VAC. ISP	OM RAIL		479.8	
	AT AREA			17.41	
	LE AREA RAT			1000.0 148.89	
	LE EXIT DIA NE MIXTURE			6.00	
ETA				0.993	
	BER COOLANT			263. 294.	
	BER COOLANT LE COOLANT			233.	
NOZZ	LE COOLANT	DT		315.	
CHAM	BER Q (HYDR	OGEN COOL	ED)	12600. 8113.	
MOZZ	LE Q (OXYGE	N COULED!		0	
	ENG1NE	STATION C	ONDITIONS		
	******		********		
	# FUEL S	SYSTEM CON	DITIONS #		BELD TH
STATION	PRESS	TEMP	FLOH 11.19	ENTHALPY -107.5	4.37
B.P. INLET B.P. EXIT	18.6 100.4	37.4 38.5	11.19	-103.0	4.39
B.P. EXIT	100.4	38.5	11.19	-103.0	4.39
IST STAGE EXIT	1134.6	49.9	11.19	-46.7 9.8	4.51 4.61
PUMP EXIT COOLANT INLET	2192.1 2170.2	61.1 61.3		9.8	4.59
COOLANT EXIT	1907.1	355.7	11.19	1135.6	0.92
TBV INLET	1907.1 1888.1	61.3 355.7 355.7 356.9	0.56	1135.6 1135.6	0.91
TBV EXIT H2 TRB INLET H2 TRB EXIT	1169.7 1888.1	356.9 355.7	0.56 10.63	1135.6	0.91
H2 TRB EXIT	1257.3	327.1	10.63	1016.9	0.68
H2 TRB DIFFUSER	1216.1	327.1	10.63	1016.9 1016.9	0.66 0.66
H2 TRB EXIT H2 TRB DIFFUSER H2 BST TRB IN H2 BST TRB OUT	1204.0	327.1 327.1 327.1 325.9	10.63 10.63	1012.1	0.64
H2 BST TRB DIFF	1169.7	325.9	10.63	1012.1	0.63
HZ TANK PRESS	18.6	327.4	0.0274	1018.3	0.0107 0.43
FSOV INLET FSOV EXIT	1169.7	327.5 327.5	11.16 11.16	1018.3	0.62
H2 BST TRB OUT H2 BST TRB DIFF H2 TANK PRESS FSOV INLET FSOV EXIT CHAMBER INJ	1117.2			1018.3	0.61
CHAMBER	1049.9				
	• OXYG	EN SYSTEM	CONDITIONS	; =	
STATION	PRESS	TEMP	FLOH	ENTHALPY 61.1	DENSITY 71.17
B.P. INLET B.P. EXIT	16.0 135.6	162.7 163.2	67.1 67.1	61.5	71.20
PUMP INLET	135.6	163.2	67.1 67.1	61.5	71.20
PUMP EXIT	4716.1	184.0	67.1 67.1	77.1 77.1	72.09 72.02
COOLANT INLET	4668.9 4436.3	184.2 499.1	67.1	198.0	27.64
OTBY INLET	4436.3	499.1	3.0	198.0	27.64
OTBV EXIT	1772.4	450.8	3.0 57.4	198.0 198.0	13.58 27.64
02 TRB INLET 02 TRB EXIT	4436.3 1976.3	499.1 404.5	57.4	179.6	18.94
OZ TRR DIFFUSER	1772.4	397.6	57.4	179.6	17.35
02 BST TRB IN 02 BST TRB OUT	4436.3	499.1	6.7 6.7	198.0 193.9	27.64 28.43
02 BST TRB OUT 02 BST TRB DIFF	4375.3	486.7	6.7	193.9	28.43
OBTY INLET	4391.6	486.7	6.7	193.9	28.43
OBTV EXIT	1772.4	438.1	6.7 67.0	193.9 181.9	14.24 16.79
MIXER 02 TANK PRESS	1772.4 16.0	403.6 295.6	0.153	181.9	0.16
OCV INLET	1483.8	400.4	67.0	181.9	16.08
OCY EXIT	1178.7	378.7	67.0 67.0	181.9 181.9	11.72 11.51
CHAMBER INJ CHAMBER	1155.2 1049.9	377.5	•7.0	101.7	••••
CHARDER	_				
	•	WALVE DA	LIA .		
VALVE	DELTA P		FLOH	* BYPASS	
OTBV	2664. 718.	0.02 0.04	3.02 0.56	5.00 5.00	
TBV FSOV	718.	3.82	11.16	2	
08TV	2619.	0.05	6.71		
OCV	505.	1.11	66.99		
	•	INJECTOR	DATA *		
#0700	DELTA P	AREA	FLOH	VELOCITY	
INJECTOR	DEL 14 P		11.16		

FUEL

LOX

2.88

11.16

66.99

291.12

TABLE 42. — DUAL-EXPANDER ENGINE — 37,500 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

			HINERY PERFORMANCE			
		*******	*************	=		
		RBINE .		H2 BOOST F		
		*****		* 14 8003/ 1		
EFFICIENCY				ICIENCY	0.766	
EFFICIENCY	(T/S)	0.454		SEPONER	71.	
SPEED	(RPH)	33653.		ED (RPM)	33653.	
MEAN DIA	(IN)	1.76	2 2	PEED	3049.	
EFF AREA	(IN2)	4.21	HEAL	D (FT)	2688.	
U/C (A	ACTUAL)	0.531	DIA	(IN)	2.98	
MAX TIP SPE	ED	372.	TIP	SPEED	438.	
STAGES		1	VOL.	. FLOH	1144.	
GAMMA		1.40	HEAL	D COEF	0.450	
PRESS RATIO			FLO	I COEF	0.201	
PRESS RATIO	(T/S)					
HORSEPOHER		71.				
EXIT MACH N		0.13				
SPECIFIC SP		150.00				
SPECIFIC DI	AMETER	0.52				
		_				
				######################################		
* H2 TU				* H2 PUMP		
		-		STAGE ONE		ACE THE
				STAGE UNE		AGE THO
EFFICIENCY	(1/1)	0.883	EFFICIENCY	0.760		0.759
EFFICIENCY	(T/S)		HORSEPOHER	891.		895.
SPEED		107143.	SPEED (RPH)	107143.		37143.
HORSEPOHER		1786.	SS SPEED	11935.	•	
MEAN DIA.	(IN)		S SPEED	1451.		1433.
	(IN2)		HEAD (FT)	33288.		3364.
U/C (A	CTUAL)	0.553	DIA. (IN)	3.22		3.22
MAX TIP SPE	ED	1481.	TIP SPEED	1506.		1506.
STAGES		1	VOL. FLOW	1114.		1090.
GAMMA		1.40	HEAD COEF	0.472		0.473
PRESS RATIO	(T/T)	1.50	FLOH COEF	0.136		
PRESS RATIO	(T/S)	1.57	DIAMETER RATIO	0.472		
EXIT MACH N		0.24	BEARING DN			
SPECIFIC SPE		66.16	SHAFT DIAMETER	28.00		
SPECIFIC DI	AMETER	1.26				

* 02 BO				02 BOOST P		
EFFICIENCY	(T/T)	0.851		CIENCY		
EFFICIENCY				EPOHER	0.764 39.	
SPEED	(RPH)			D (RPM)	9022.	
MEAN DIA	(IN)	6.34	S SP		3026.	
EFF AREA	(11/2)		HEAD		242.	
	CTUAL)		DIA.		3.34	
MAX TIP SPEE		260.		SPEED	132.	
STAGES		1		FLOH	423.	
GAMMA		1.97	HEAD	COEF	0.450	
PRESS RATIO	(T/T)			COEF	0.200	
PRESS RATIO	(T/S)	1.01				
HORSEPOHER		39.				
EXIT MACH NO		0.02				
SPECIFIC SPE		36.68				
SPECIFIC DIA	AMETER	2.16				
*******				********		
■ 02 TUF				# 02 PUMP 1		

EFFICIENCY	(1/1)	0.887		CIENCY	0.750	
EFFICIENCY			HOKZ	EPOHER	1488.	
SPEED Horsepower		67087. 1488.		D (RPM)	67087.	
MEAN DIA	CTAIN			PEED	26973. 1467.	
MEAN DIA EFF AREA	CIN21	0.46	\$ SPE			
U/C (AC			HEAD DIA.		9146.	
MAX TIP SPEE		602.		SPEED	2.72 796.	
STAGES		1		FLON	418.	
GAMMA		1.97		COEF	0.465	
PRESS RATIO	(T/T)			COEF	0.465	
PRESS RATIO				ETER RATIO	0.672	
EXIT MACH NU		0.36		ING DN		
SPECIFIC SPE		82.37		DIAMETER		
SPECIFIC DIA						

TABLE 43. — DUAL-EXPANDER ENGINE — 50,000 LBF THRUST (COPPER GROOVED CHAMBER)

ENGINE PERFORMANCE PÄRAMETERS

CHAMBER PRESSURE	1022.1
VAC ENGINE THRUST	50000.
TOTAL ENGINE FLON RATE	104.20
DEL. VAC. ISP	479.8
THROAT AREA	23.84
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	174.23
ENGINE MIXTURE RATIO	6.00
ETA C*	0.993
CHAMBER COOLANT DP	226.
CHAMBER COOLANT DT	278.
NOZZLE COOLANT DP	235.
NOZZLE COOLANT DT	295.
CHAMBER Q (HYDROGEN COOLED)	15803.
NOZZLE Q (OXYGEN COOLED)	10262.

ENGINE STATION CONDITIONS

			**********	H # 6	
			* SMOITIONS	CATUAL DV	DENSTITY
STATION B.P. INLET B.P. EXIT PUMP INLET 1ST STAGE EXIT PUMP EXIT COOLANT INLET COOLANT INLET TBV INLET TBV EXIT H2 TRB INLET H2 TRB EXIT H2 TRB DIFFUSER H2 BST TRB OUT H2 BST TRB OUT H2 TANK PRESS FSOV INLET FSOV EXIT CHAMBER	PRESS	77.4	16.92	ENTHALPY -107.5	4.37
B.P. INLE!	10.9	37.4 te 6	14.92	-103.0	4.29
DIMD THEFT	100.8	38.5	14.92	-103.0	4.29
IST STAGE EXIT	1081.6	49.0	14.92	-50.4	4.52
PUMP EXIT	2088.7	59.3	14.92	2.5	4.62
COOLANT INLET	2067.8	59.5	14.92	2.5	4.60
COOLANT EXIT	1842.0	337.4	14.92	1061.3	0.93
TBV INLET	1823.6	337.5	0.75	1061.3	0.93
TBV EXIT	1138.6	338.3	0.75	1061.3	0.40
H2 TRB INLET	1823.6	337.5	14.18	1061.3	0.93 0.78
H2 TRB EXIT	1230.1	310.7	14.18	75U.3	0.47
H2 TRB DIFFUSER	1184.7	310.7	14.18	950.3	0.47
H2 BST TRB IN	1172.9	310.7	14.18	945 5	0.44
HZ BS1 IRB UUI	1151.7	307.6	14.18	945.5	0.45
HZ BOI IND DIFF	1130.4	310.2	0.0386	951.3	0.0113
ECON INTET	1138 6	311.0	14.89	951.3	0.+5
FSOV FREE	1110.1	311.0	14.89	951.3	0.63
CHAMBER INJ	1087.5	311.0	14.89	951.3	0.62
H2 BST TRB OUT H2 BST TRB DIFF H2 TANK PRESS FSOV INLET FSOV EXIT CHAMBER INJ CHAMBER	1022.1				
•					
	* OXYG	EN SYSTEM	CONDITIONS	; •	
STATION	PRESS	TEMP	FLON	ENTHALPY	DENSITY
STATION B.P. INLET B.P. EXIT	16.0	162.7	89.5	61.1	71.17
B.P. EXIT	135.6	163.2	89.5	61.5	71.20
PUMP INLET PUMP EXIT	135.6	163.2	89.5	61.5	71.26 72.15
PUMP EXIT	4632.1	183.1	87.5	ENTHALPY 61.1 61.5 61.5 76.6 76.6 191.2	72.15
COOLANT INLET	4585.8	183.3	87.5	101.7	28.95
COOLANT INLET USEX.MET CELT OTBY INLET OTBY EXIT OZ TRB INLET OZ TRB DIFFUSER OZ BST TRB IN OZ BST TRB IN OZ BST TRB DIFF OBTY INLET OBTY EXIT MIXER OZ TANK PRESS	4351.1	4/8.5	67.7	191.2	28.95
OTBY INLE!	1725 0	478.3	4.0 4.0 76.6 76.6 76.6	191.2	14.43
OT TOP THE ET	4361 1	478.5	76.6	191.2	28.95
OZ TRB INCCI	1926.5	387.5	76.6	173.5	20.17
02 TRB DIFFUSER	1725.0	380.4	76.6	173.5 191.2	18.48
OZ BST TRB IN	4351.1	478.5	9.0	191.2	28.95
O2 BST TRB OUT	4307.4	466.2	9.0	187.2	29.67
02 BST TRB DIFF	4305.7	466.2	9.0	187.2	29.84
OBTY INLET	4305.7	466.2	9.0	187.2	29.86
OBTV EXIT	1725.0	416.2	9.0	187.2	15.21
MIXER	1725.0	385.3	89.3	175.7	18.€
02 TANK PRESS OCV INLET OCV EXIT	16.0	267.1	9.0 9.0 9.0 9.0 89.3 0.227 89.3	175.7 175.7	0.1 6 17.53
OCV INLET	1638.7	382.1	87.3	175.7	12.19
OCV EXIT		359.2 358.0		175.7	12.44
CHAMBER INJ CHAMBER	1124.3	336.0	67.3	1,,,,,	
CHAMBER	1022.1				
		VALVE DA	ATA =		
VALVE	DELTA P	AREA	FLOH	% BYPASS	
OTBV	2626.	0.03	4.03	5.00	
TBV	2626. 685. 28.	0.06	0.75	5.00	
FS0V	28.	5.10			
OBTV	2581.	0.07	8.95		
OCA	492.	1.45	89.32		
		INJECTOR	DATA *		
		405:	E1 01	WEL OCTTY	
INJECTOR	DELTA P	AREA	FLON	VELOCITY 982.19	
FUEL	77.	3.51	14.89 89.32	982.19 275.70	
LOX	114.	3.75	67.32	2/3./4	

TABLE 43. — DUAL-EXPANDER ENGINE — 50,000 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

	MACHINERY PERFORMANCE DATA #	
***********		======
# H2 BOOST TURBINE (. 2 2005.	PUMP =

EFFICIENCY (T/T) 0.85 EFFICIENCY (T/S) 0.46		0.765
SPEED (RPM) 29210		%. 29210.
MEAN DIA (IN) 2.0	2 S SPFFD	3045.
EFF AREA (IN2) 5.5	2 HEAD (FT)	
U/C (ACTUAL) 0.53	7 DIA. (IN)	3.45
MAX TIP SPEED 369 STAGES		439.
GAMMA 1.3	1 VOL. FLOM 6 HEAD COEF	1526. 0.458
PRESS RATIO (T/T) 1.0		0.201
PRESS RATIO (T/S) 1.0		*****
HORSEPOHER 96		
EXIT MACH NUMBER 0.1 SPECIFIC SPEED 150.0		
SPECIFIC SPEED 150.0 SPECIFIC DIAMETER 0.5		
	•	
	*=====	
# H2 TURBINE #	# H2 PUR	

	STAGE ON	
EFFICIENCY (T/T) 0.89		
EFFICIENCY (T/S) 0.79	7 HORSEPOHER 1110.	
SPEED (RPH) 100008	SPEED (RPM) 100000.	100000.
HORSEPOHER 2226		
MEAN DIA. (IN) 2.99 EFF AREA (IN2) 1.00		
U/C (ACTUAL) 0.553		
MAX TIP SPEED 1454.		
STAGES		
GAIGA 1.36		0.457
PRESS RATIO (T/T) 1.48		
PRESS RATIO (T/S) 1.56 EXIT MACH NUMBER 0.26		
SPECIFIC SPEED 74.15		
SPECIFIC DIAMETER 1.14		
• 02 BOOST TURBINE •	- 00 0000	
- 05 PO021 DMBINE =	• 02 BOOST (
EFFICIENCY (T/T) 0.857		0.764
EFFICIENCY (T/S) 0.815		52.
SPEED (RPM) 7812.		7812.
MEAN DIA (IN) 7.32 EFF AREA (IN2) 0.39		3026.
EFF AREA (IN2) 0.39 U/C (ACTUAL) 0.553		
MAX TIP SPEED 260.		3. 8 5 132.
STAGES 1	VOL. FLOW	564.
GAPPIA 2.01	, L. D. 002.	0.450
PRESS RATIO (T/T) 1.01 PRESS RATIO (T/S) 1.01	FLON COEF	0.200
HORSEPOHER 52.		
EXIT MACH NUMBER 0.02		
SPECIFIC SPEED 36.46		
SPECIFIC DIAMETER 2.18		
***	********	
* 02 TURBINE #	4 OZ PUMP	
**********	******	
EFFICIENCY (T/T) 0.895	EFFICIENCY	0.759
EFFICIENCY (T/S) 0.783	HORSEPOHER	1923.
SPEED (RPM) 57463, HORSEPOHER 1923.	SPEED (RPM)	57463.
	SS SPEED S SPEED	26681. 1471.
EFF AREA (IN2) 0.61	HEAD (FT)	8971.
	DIA. (IN)	3.13
MAX TIP SPEED 592.	TIP SPEED	785.
STAGES 1	VOL. FLOH	557.
GAPPA 2.01 PRESS RATIO (T/T) 2.26	HEAD COEF	0.468
PRESS RATIO (T/T) 2.26 PRESS RATIO (T/S) 2.62	FLOW COEF DIAMETER RATIO	0.137
EXIT MACH NUMBER 0.36	BEARING DN	
SPECIFIC SPEED 82.68	SHAFT DIAMETER	
SPECIFIC DIAMETER 1.03		

TABLE 44. - FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR - 7500 LBF THRUST (COPPER GROOVED CHAMBER)

	DE	oronales.	DADAME TERS		
# # #	ENGINE PE		PARAMETERS		
	NED DOECCIE	nc .		1906.0	
	BER PRESSUR ENGINE THRU			7500.	
TOTAL	_ ENGINE FL			15.62	
	VAC. ISP AT AREA			480.1 1.93	
	AI AREA RAI LE AREA RAI	110		1000.0	
	LE EXIT DIA			49.52	
ENGI ETA	NE MIXTURE	RATIO		6.00 0.993	
	BER COOLAN	T DP		1302.	
	BER COOLAN			747. 5996.	
NOZZ	LE/CHAMBER	4		3,,,,,,	
		STATION C			
	******	****			
		SYSTEM COM	DITIONS .		DENSITY
STATION	PRESS	TEMP 37.4	FLOM 2.23	ENTHALPY -107.5	4.37
B.P. INLET B.P. EXIT	18.6 100.4	38.5	2.23	-103.0	4.39
PUMP INLET	100.4	38.5	2.25	-103.0	4.39
	2168.6	77.3	2.23	54.2 202.8	4.16 4.13
2ND STAGE EXIT PUMP EXIT	4119.0 5994.5	112.8 144.5	2.23	344.0	4.17
COLD REGEN IN	5934.5 5875.2	145.0	2.23	344.0	4.15
	5875.2	374.0	2.23	1266.3 1266.3	2.19 2.19
COOLINITY ETHER	5875.2 4573.3	374.0 1121.3	2.23	3950.8	0.69
COOLANT EXIT TBV INLET	4573.3 4527.6 2199.7 4527.6 4186.7	1121.6	0.11	3950.8	0.69
TBV EXIT	2199.7	1138.3	0.11	3950.8	0.35
02 TRB INLET	4527.6	1121.6	2.12 2.12	3950.8 3881.8	0.65
02 TRB EXIT H2 TRB IMLET	4186.7	1104.4	2.12	3881.8	0.65
H2 TRB EXIT	2316.5	983.0	2.12	3411.2	0.42
H2 TRB DIFFUSER	2290.7	983.2	2.12	3411.2 3411.2	0.41
H2 BST TRB IN H2 BST TRB OUT	2267.8	983.2 982.1	2.12 2.12	3406.4	0.41
H2 BST TRB DIFF	2244.4	982.2	2.12	3406.4	0.41
02 BST TRB IN	2222.0	982.3	2.12	3406.4 3403.8	0.40
02 BST TRB OUT 02 BST TRB DIFF	2214.1	981.6 981.7	2.12 2.12	3403.8	0.40
H2 TANK PRESS	18.6	1004.8	0.0018	3451.2	0.0035
GOX HEAT EXCH IN	2199.7	787.4	2.23	3431.2	0.40 0.39
GOX HEAT EXCH OU		989.3 989.3	2.23	3429.8 3429.8	0.39
HOT REGEN IN	2123.0	727.4	2.23	2506.8	0.51
HOT REGEN EX FSOV INLET	2123.0	727.4	2.23	2506.8	0.51 0.50
FSOV EXIT	2070.0	727.7 727.8	2.23 2.23	2506.8 2506.8	0.50
CHAMBER INJ CHAMBER	2049.3 1906.0	727.5	2.23	232212	
CHAIDEN					
		GEN SYSTEM	CONDITIONS	ENTHALPY	DENSITY
STATION B.P. INLET	PRESS 16.0	162.7	13.4	61.9	70.99
B.P. EXIT	135.2	165.3	13.4	62.3	70.84
PUMP INLET	135.2	165.3	13.4	62.3 73.2	70.84 71.17
PUMP EXIT 02 TANK PRESS	3086.8	150.8 400.0	13.4 13.4 0.023	204.7	0.12
OSOV INLET	3056.0	181.0	2.0		71.12
OSOV EXIT	2139.2	184.6	2.0	73.2 73.2	69.70 71.12
OCV INLET	3056.0 2139.2	181.0 184.6	11.4 11.4	73.2	69.70
OCV EXIT CHAMBER INJ	2117.8	184.7		73.2	69.66
CHAMBER	1906.0				
		# VALVE DA	TA *		
	DELTA P	AREA	FLON	% BYPASS	
VALVE TBV	2328.	0.01	0.11	5.00	
FSOV	53.	0.63	2.23		
OCV	917.	0.07	13.39		
	•	INJECTOR	DATA *		
INJECTOR	DELTA P	AREA	FLOH		
FUEL	143.	0.40	2.23		
LOX	212.	0.16	13.39		

TABLE 44. — FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR — 7500 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

**************************************	ERY PERFORMANCE DATA	
*********	*************	
**************	*********	****
* H2 BOOST TURBINE *	* H2 BOOST P	UMP =
*************	********	
EFFICIENCY (T/T) 0.745	EFF1C1ENCY HORSEPOHER	0.766
EFF1C1ENCY (T/S) 0.422 SPEED (RPH) 75301.	HORSEPOHER	14.
MEAN DIA (IN) 1.44	SPEED (RPM)	75301.
EFF AREA (INC) 1.25	\$ SPEED	3050.
U/C (ACTUAL) 0.971	HEAD (FT) DIA. ([N]	2686.
MAN TIP SPEED 572.	TIP SPEED	1.33
STAGES	VOL. FLOM	438.
GA1994 1.44	HEAD COSE	228. 0.450
PRESS RATIO (T/T) 1.01 PRESS RATIO (T/S) 1.01	HEAD COEF FLOW COEF	0.201
PRESS RATIO (T/S) 1.01		0.201
HORSEPOHER 14.		
EXIT MACH HUMBER 0.07		
SPECIFIC SPEED 150.00		
SPECIFIC DIAMETER 0.78		
444044444		
" HZ TURBINE "	######################################	
**********	41474444	
		STAGE THO STAGE THREE

OFFICIONCY (T/T) 0.799	EFFICIENCY 0.576 HORSEPOHER 497.	0.586 0.593 470, 446. 187500, 187500,
EFFICIENCY (T/S) 0.781	HORSEPOHER 497.	470. 446.
		187500. 187500.
PURSEPONER 1413.	SS SPEED 9337. S SPEED 673. HEAD (FT) 70485. DIA. (IN) 2.53 TIP SPEED 2073. VOL. FLOM 241.	
FEE AMEA (1991 A.C.	5 SPEED 673.	696. 713.
HAT (ACTION) 0.12	MEAD (FT) 70485.	67813. 65115.
MAX TIP SPEED 1547	UIA. (IN) 2.53	2.53 2.53
STAGES	VOL. FLON 241.	2075. 2075.
GAPPIA 1.44	HEAD COEF 0.528	****
GAMMA 1.44 PRESS RATIO (T/T) 1.81 PRESS RATIO (T/S) 1.85	HEAD COEF 0.528 FLOH COEF 0.088	0.508 0.488
	DIAMETER RATIO 0.291	
EXIT MACH MUMBER 8.13 SPECIFIC SPEED 49.52	BEARING DN 3.00E+06	
SPECIFIC SPEED 49.52	SHAFT DIAMETER 14.00	
SPECIFIC DIMMETER 1.48		
***************	************	
* 02 BOOST TURBINE *	# 02 BOOST PUR	

EFFICIENCY (T/T) 0.750	EFF ICIENCY	0.764
EFFICIENCY (T/S) 0.478	EFF (CIENCY HORSEPONER SPEED (RPH)	6.
SPEED (RPH) 20162.	SPEED (RPM)	20162.
MEAN DIA (IN) 4.11 EFF AREA (INZ) 1.74	2 ZPEED	3026.
EFF AREA ([NZ) 1.74 U/C (ACTUAL) 1.007	HEAD (FT) DIA. (IN)	242.
MAX TIP SPEED 392.	DIA. (IN)	1.50
STAGES 1	TIP SPEED VOL. FLOW	132.
GAPPIA 1.44	HEAD COEF	85. 0.450
PRESS RATIO (T/T) 1.00	FLON COEF	0.200
PRESS RATIO (T/S) 1.01	7.22	0.200
HORSEPONER 8.		
HORSEPONER 8. EXIT MACH MUMBER 0.05 SPECIFIC SPEED 84.62		
SPECIFIC SPEED 84.62		
SPECIFIC DIMMETER 1.33		
*********	*********	
* 02 TURBINE *	4 02 PUMP H	
**********	*******	
EFFICIENCY (T/T) 0.807 EFFICIENCY (T/S) 0.750 SPEED (RPH) 131236.	EFFICIENCY	0.703
EFFICIENCY (T/S) 0.756	HORSEPOHER	207.
SPECED (NOWN) 131236.	EFFICIENCY HORSEPOMER SPEED (RPM) SS SMEEN	131256.
HORSEPONER 297. HEAN DIA (DH) 1.77 EFF ANEA (DH) 0.21	SS SPEED S SPEED	4.349.71.
EFF AREA (INC) 0.21	2 2NEED	1777.
U/C (ACTUAL) 8.546	HEAD (FT) DIA. (IN)	5971. 1.19
MAK TIP SPEED 1891.	TIP SPEED	684.
STAGES 1	VOL. FLON	85.
GA494 1.44	HEAD COEF	0.411
PRESS RATIO (T/T) 1.08	FLOH COEF	0.152
PRESS RATIO (T/S) 1.09	DIAMETER RATIO	0.679
EXIT MACH MUMBER 0.00 SPECIFIC SPEED 51.70	BEARING DH 1.	57E+06
SPECIFIC DIAMETER 1.50	SHAFT DIAMETER	12.00
1.34		
RESEMERATOR DATA		
COLD SIDE HOT SIDE DELP 59.25 45.44		
23.44		
AREA 0.16 0.65 FLON 2.23 2.21		
EFFECTIVENESS 0.31		
NTU 0.45		
CRATIO 0.87		
CHEN. 7.87		
REGEN Q 2060.03		

TABLE 45. — FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR — 15,000 LBF THRUST (COPPER GROOVED CHAMBER)

***			PARAMETERS		
CHANG	ER PRESSU	r.		1824.0	
	ENGINE THRU			15000.	
TOTAL	ENGINE FL	OM RATE		31.24	
	VAC. ISP			480.1 4.02	
	AT AREA LE AREA RA'	T 10		1000.0	
	E EXIT DI			71.58	
	E MIXTURE			6.00	
ETA (0.993	
	BER COOLAN			854. 567.	
	BER COOLAN' LE/CHAMBER			9408.	
			CONDITIONS		

STATION	PRESS		(DITIONS #	ENTHALPY	DENSITY
B.P. IMLET	18.6	37.4	4.47	-107.5	4.37
D.D. EYIT	100.8	18 S	4.47	-103.0	4.39
PURP INLET	100.8	38.5 64.6	4.47	-103.0	4.39 4.38
IST STAGE EXIT		64.6 89.3	4.47 4.47	10.1 120.6	4.40
	3548.9 5238.7	112.8	4.47	228.5	4.46
COLD REGEN IN COLD REGEN EX COOLANT INLET	5186.4	113.2	4.47	228.5	4.44
COLID REGEN EX	5134.5	302.9 302.9 870.4	4.47	957.5	2.35
COOLANT INLET	5134.5	302.9	4.47 4.47	957.5 3063.1	2.35 0.82
	4280.1 4237.3	870.4	0.22	3063.1	0.82
TBV INLET TBV EXIT 02 TRB INLET 02 TRB EXIT 12 TRB INLET 142 TRB EXIT 142 TRB DIFFUSER	2105.1	884.8	0.22	3063.1	0.42
02 TRB INLET	4237.3	870.7	4.24	3063.1	0.82
02 TRB EXIT	3868.6	855.2 855.2	4.24	2999.7	0.77 0.77
H2 TRB INLET	3868.6	855.2 767.5	4.24 4.24	2999.7 2650.7	0.51
H2 TRB EXIT H2 TRB DIFFUSER	2222.3	767.7	4.24	2650.7	0.50
HZ REST TRR IN	2171.8		4.24	2650.7	0.50
H2 BST TRB IN H2 BST TRB OUT H2 BST TRB DIFF	2154.6	766.6	4.24	2646.0	0.50
H2 BST TRB DIFF	2147.8	766.6 766.8	4.24	2646.0	0.49
	2126.3	766.B 766.1	4.24 4.24	2646.0 2643.4	0.49
OR BET THE DIEE	2117.5	766.1	4.24	2643.4	0.49
H2 TANK PRESS GOX HEAT EXCH IN GOX HEAT EXCH OUT	18.6	784.8	0.0046	2664.4	0.0045
GOX HEAT EXCH IN	2105.l	772.1	4.46	2664.4	0.48
GOX HEAT EXCH OUT	2094.6	771.8	4.46	2663.0 2663.0	0.48 0.48
HOT REGEN IN	2094.6	771.8 567.1	4.46 4.46	1933.3	0.62
HOT REGEN EX	2031.8	567.1	4.46	1933.3	0.62
FSOV EXIT	1981.0	667 6	4.46	1933.3	0.61
FSOV INLET FSOV EXIT CHAMBER INJ	1961.2	567.4	4.46	1933.3	0.60
CHAMBER	1824.0				
	* OXY	EN SYSTEM	CONDITIONS	ENTHALPY	DENSITY
STATION	PRESS 16.0	162.7	26.8	61.9	70.99
B.P. INLET B.P. EXIT	135.2	165.3	26.8	62.3	70.84
CT	176 2	145 8	26.8	62.3	70.84
PUMP EXIT 02 TANK PRESS	2954.0	179.2	26.8	72.4	71.31
02 TANK PRESS	16.0	400.0	0.046	204.7 72.4	0.12 71.26
USUN INCE!	2924.5 2047.1	179.3 182.7	4.0 4.0	72.4	69.90
OSOV EXIT	2924.5	179.3		72.4	71.26
OCV EXIT	2047.1	182.7	22.8	72.4	69.90
CHAMBER INJ	2026.7	182.8	26.8	72.4	69.87
CHAMBER	1824.0				
		■ VALVE D	ATA 4		
VALVE	DELTA P		FLON	* BYPASS	
TBV	2132.		0.22 4.46	5.00	
FSOV	51. 877.				
ocv		INJECTOR			
			FLOH		
INJECTOR	DELTA P 137.				
Fuel. Lox	203.				

TABLE 45. — FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR
— 15,000 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

	FRY PERFORMANCE DATA		
**********	****************		
*************	*********		
# H2 SOOST TURBIN€ #	4 H2 BOOST P		
EFFICIENCY (T/T) 0.796 EFFICIENCY (T/S) 0.519	EFF1C1ENCY HORSEPONER	0.765	
SPEED (RPM) 53383.	HORSEPOMER SPEED (RPM)	29.	
MEAN DIA (IN) 1.44 EFF AREA (IN2) 2.11	S SPEED	53283. 3045.	
EFF AREA (IN2) 2.11	HEAD (FT) DIA. (IN)	2701.	
U/C (ACTUAL) 0.686 MAX TIP SPEED 433.	DIA. (IN) TIP SPEED	1.89 439.	
STAGES 1	VOL. FLOH	457.	
GAMMA 1.39 PRESS RATIO (T/T) 1.01	HEAD COEF	0.450	
PRESS RATIO (1/1) 1.01	FLOM COEF	0.201	
HORSEPONER 29.			
EXIT MACH NUMBER 0.07 SPECIFIC SPEED 150.00			
SPECIFIC DIAMETER 0.65			

**************	4 H2 PUMP		
		STAGE THO STAGE THE	
EFFICIENCY (T/T) 8.807	EFFICIENCY 0.649	0.652 0.653	
EFFICIENCY (T/T) 8.807 EFFICIENCY (T/S) 0.784 SPEEN (ROM) 156567		699. 682.	
SPEED (RPH) 136363.	SPEED (RPM) 156363.	699. 682. 136363. 136363.	
HORSEPOHER 2096. HEAN DIA. (IN) 2,48 EFF AREA (IN2) 8,23	SS SPEED 9545. S SPEED 790.		
EFF AREA (IN2) 8.23	HEAD (FT) 57137.	799. 806. 56051. 54879. 3.12 3.12	
U/C (ACTUAL) 0.499	DIA. (IM) 3.12	3.12 3.12	
	TIP SPEED 1857. VOL. FLON 458.	1857. 1857. 455. 458.	
GAPPIA 1.39	HEAD COEF 0.533 FLOH COEF 0.096	0.523 0.512	
PRESS RATIO (T/T) 1.74	FLON COEF 0.096		
PRESS RATIO (T/S) 1.77 EXIT MACH HUMBER 0.14	DIAMETER RATIO 0.531		
EXIT MACH NUMBER 0.14 SPECIFIC SPEED 43.34	BEARING DN 3.00E+06 SHAFT DIAMETER 22.00		
SPECIFIC DIAMETER 1.63			
******	*********	4+++	
# 02 800ST TURBINE #	# 02 B00ST PU		
FFFICIENTY (T/T) n m24	######################################	4444	
EFFICIENCY (T/T) 0.824 EFFICIENCY (T/S) 0.648	EFFICIENCY HORSEPOHER	15.	
SPEED (RPH) 14257.	SPEED (RPM)	14257.	
MEAN DIA (IN) 4.11 EFF AREA (IN2) 2.97 U/C (ACTUAL) 0.712	S SPEED HEAD (ET)	3026. 242.	
U/C (ACTUAL) 0.712	HEAD (FT) DIA. (IN)	2.11	
MAX TIP SPEED 290. STAGES 1	TIP SPEED	132.	
GAPMA (.39	VOL. FLON HEAD COEF	170. 0.450	
PRESS RATIO (T/T) 1.00	HEAD COEF FLOW COEF	0.200	
PRESS RATIO (T/S) 1.01 HORSEPOMER 15.			
EXIT MACH NUMBER 0.04 SPECIFIC SPEED 96.31			
SPECIFIC DIAMETER 1.01			
**********	********		
* OZ TURBINE *	1 02 PUPP +		
EFFICIENCY (T/T) 0.822	EFFICIENCY	0.730	
EFFICIENCY (T/S) 0.766	EFF1CTENCY HORSEPOWER	180	
SPEED (RPH) 90118, HORSEPOHER 380,	SPEED (RPM) SS SPEED	90118. 23201.	
HORSEPOMER 380. HEAN DIA (IN) 2.48 EFF AREA (IN2) 0.36	SS SPEED S SPEED	1787.	
EFF AREA (1N2) 0.36 U/C (ACTUAL) 0.548	HEAD (FT)		
MAX TIP SPEED 1044.	DIA. (IN) TIP SPEED	1.68 660.	
STAGES (VOL. FLOH	169.	
GAMMA E.39 PRESS RATIO (T/T) E.10	HEAD COEF	0.420	
PRESS RATIO (T/S) 1.10	FLON COEF DIAMETER RATIO	0.153 0.680	
EXIT MACH NUMBER 0.09	BEARING DN 3	.44E • 06	
SPECIFIC SPEED 49.91 SPECIFIC DIAMETER 1.57	SHAFT DIAMETER	16.00	
Sectific Blancier 1.57			
REGEMERATOR DATA			
COLD SIDE HOT SID	Ε		
DELP 51.87 62.8	4		
DELT 189.70 -204.6 AREA 0.32 L.2			
FLOH 4,47 4,4			
EFFECTIVENESS 0.31			
NTU 0.46 CRATIO 0.93			
CHIH 15.92			
REGEN Q 3257.29			

TABLE 46. — FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR — 25,000 LBF THRUST (COPPER GROOVED CHAMBER)

ENGINE	PERFORMANCE	PARAMETERS	
			• •

CHAMBER PRESSURE	1718.0
VAC ENGINE THRUST	25000.
TOTAL ENGINE FLOW RATE	52.08
DEL. VAC. ISP	480.1
THROAT AREA	7.12
NOZZLE AREA RATIO	1000.0
NOZZLE EXIT DIAMETER	95.20
ENGINE MIXTURE RATIO	6.00
ETA C.	0.993
CHAMBER COOLANT DP	778.
CHAMBER COOLANT DT	443.
MOZZI E /CHAMRED O	12628.

ENGINE STATION CONDITIONS

	• FUEL	SYSTEM CO	NDITIONS *		000 m 1 m
STATION	PRESS	TEMP	FLOH	ENTHALPY	4.37
B.P. INLET	18.6	37.4	7.45	-107.5 -103.0	4.39
B.P. EXIT	100.6	38.5	7.45	-103.0	4.39
PUMP INLET 1ST STAGE EXIT 2ND STAGE EXIT	100.6	38.5	7.45 7.45	-8.8	4.49
IST STAGE EXIT	1709.0	58.8 78.3	7.45	85.0	4.57
2ND STAGE EXIT	4968.4	/8.3 67 T	7.45	177.8	4.66
	4918.8	97.3 97.7	7.45	177.8	4.63
COLD REGEN IN COLD REGEN EX	4949 6	258.6	7.45	763.8	2.56
COOR ANT IM ET	4869.6 4869.6 4091.5 4050.6	258.6	7.45	763.8	2.56
COOLANT INLET	4091.5	701.7 702.0 714.7 702.0	7.45	2459.0	0.97
TRY INLET	4050.6	702.0	0.37	2459.0	0.96
TBV INLET	1982.9	714.7	0.37	2459.0	0.49
		702.0	7.08	2459.0	0.96
OZ TRB EXIT	3666.1	688.1	7.08	2401.0	0.90
HC TRB INLET	3666.1	688.1	7.08	2401.0	0.90
HC TRB EXIT	2116.3	614.2	7.08	2105.4	0.60
C2 TRB INLET C2 TRB EXIT H2 TRB INLET H2 TRB EXIT H2 TRB DIFFUSER H2 BST TRB IN H2 BST TRB OUT	2079.7	614.4	7.08	2105.4	0.59
HZ BST TRB IN	2058.9	614.4	7.08	2105.4	0.59
HC BST TRB OUT	2039.0	613.3	7.08	2100.6	0.58
HZ BST TRB DIFF	2024.3	613.4	7.08	2100.6	0.58 0.57
OC BST TRB IN	2004.1	613.5	7.08	2100.6	0.57
OC BST TRB OUT	1994.3	612.8	7.08	2098.1 2098.1	0.57
CC BST TRB DIFF	1992.9	612.8	7.08		0.0057
HC BST TRB OUT HC BST TRB DIFF CC BST TRB IN CC BST TRB OUT CC BST TRB DIFF HC TANK PRESS GOX HEAT EXCH IN GOX HEAT EXCH OUT	18.6	628.0	7.66	2116.1 2116.1	0.56
GOX HEAT EXCH IN	1982.9	617.6	7.44	2114.8	0.56
GOX HEAT EXCH UD	1 1773.0	417.6	7.44	2114.8	0.56
HOT REGEN IN	1973.0	457.0	7.44	1528.0	0.72
GOX HEAT EXCH OUT HOT REGEN IN HOT REGEN EX FSOV INLET FSOV EXIT CHAMBER INJ	1913.8	617.6 457.0 457.0 457.2 457.3	7.44		0.72
FORM EVIT	1865.9	457.2	7.44 7.44 7.44	1528.0	0.71
CHAMBER INJ	1867.3	457.3	7.44	1528.0	0.70
DHAMBER	1718.0				
C. C					
	* OXY	DEN SYSTEM	CONDITIONS	S #	
STATION B.P. INLET	PRESS	TEMP	FLOH	ENTHALPY 61.9	DENSITY
B.P. INLET	16.0	162.7	44.7	61.9	70.99 70.84
B.P. EXIT	135.2	165.3		62.3 62.3	70.84
PUMP INLET	135.2	165.3	44.7 44.7	71.5	71.37
PUMP INLET PUMP EXIT 02 TANK PRESS	2782.4	177.7	44.7	204.7	0.12
PUMP EXIT 02 TANK PRESS 050V INLET 050V EXIT	16.0	400.0	0.076 6.7	71.5	71.33
OSOV INLET	2754.5	181.1	6.7	71.5	70.04
OSOV EXII	2754.5	177.9	87.9	71.5	71.33
OCV INLET	1420 2	191 1	37.9 37.9	71.5	70.04
OCV EXIT CHAMBER THU	1908.9	181.1		71.5	70.01
CHAMBER	1718.0				
CINCER	••••				
		WALVE D			
VALVE	DELTA P	AREA	FLOH	% BYPASS 5.00	
TBV	2068.	0.02	0.37	5.00	
FSOV	48.	1.04	,		
ocv	826.	0.23	44.64		
		INJECTOR	DATA *		
INJECTOR	DELTA P	AREA	FLOW		
FUEL	129.	1.17	7.44		
LOX	191.	0.58	44.64		

TABLE 46. — FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR — 25,000 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

	MERY PERFORMANCE DATA	

• H2 BOOST TURBINE •		DOST PUMP +
EFFICIENCY (T/T) 0.814	EFFICIENCY	0.766
EFFICIENCY (T/S) 0.407	EFFICIENCY HORSEPONEF	. 48.
SPEED (RPH1 41283.	SPEED (F	PM1 41283.
MEAN DIA (IN) 1.44 EFF AREA (IN2) 3.01	2 SPEED	3048. FT) 2693.
U/C (ACTUAL) 0.531	HEAD I	(H) 2.43
MAX TIP SPEED 380.	TIP SPEEN	410
STACES I	VOL. FLOM	762.
GAMMA 1.43 PRESS RATIO (T/T) 1.01 PRESS RATIO (T/S) 1.02 MODERDINER	HEAD COEF FLOH COEF	0.450
PRESS RATIO (T/S) 1.02	FEOM COEF	0.201
non ser unen 4g.		
EXIT MACH NUMBER 0.11 SPECIFIC SPEED 149.74		
SPECIFIC SPEED 149.74 SPECIFIC DIAMETER 0.51		
Sectific Binetics 0.51		
*******		******
# H2 TURBINE *		PUP :
***********		E ONE STAGE THO STAGE THREE

EFFICIENCY (T/T) 0.861	EFFICIENCY 0	.708 0.707 8.706 994. 987. 979. 008. 125000. 125000.
EFFICIENCY (T/S) 0.828	HORSEPONER	994. 987. 979.
SPEED (RPH) 125000. HORSEPOMER 2959.	SS SPEED 125	347.
MEAN DIA. (IN) 2.60	S SPEED	992. 988. 987.
SPEEU (RPH) (25000. HORSEPOMER 2959. MEAN DIA. (IN) 2.60 EFF AREA (IN2) 0.36 U/C (ACTUAL) 0.521 MAX TIP SPEED 1514	HEAD (FT) 51	958. 51522. S1037.
U/C (ACTUAL) 0.521 MAX TIP SPEED 1539.	DIA. (IN) TIP SPEED 1	3.29 3.29 3.29 794. 1794. 1794.
STAGES 2	VOI FLOW	746 781 718
0.72	HEAD COSF 0	.519 0.515 0.510
PRESS RATIO (T/T) 1.73	FLON CORDF 0	.110
PRESS RATIO (T/S) 1.77	DIAMETER RATIO 0	. 383 F+04
PRESS RATIO (T/S) 1.77 EXIT MACH HUMBER 0.17 SPECIFIC SPEED 55.08	SHAFT DIAMETER 2	4.00
SPECIFIC DIAMETER 1.39		
**************	******	*******
# 02 BOOST TURBINE #		OST PUMP .
444144444444444444	******	
EFFICIENCY (T/T) 0.876	EFFICIENCY	0.764 26. PM) 11043.
EFFICIENCY (T/S) 0.730 SPEED (RPH) 11043.	HORSEPOHER	Z6. PM1 1102 t
MEAN DIA (IN) 4.11	< < CPFFT1	3026.
MEAN DIA (IN) 4.11 EFF AREA (IN2) 4.34	HEAD (FT) 242. IN) 2.73
U/C (ACTUAL) 0.552	DIA. (IN) 2.73
MAX TIP SPEED 234. STAGES I	TIP SPEED VOL. FLOW	
CAMMA I 4 T	HEAD COEF FLOM COEF	0.450
PRESS RATIO (T/T) 1.00 PRESS RATIO (T/S) 1.01	FLOM COEF	0.200
HORSEPOMER 26. EXIT MACH NUMBER 0.04		
EXIT MACH NUMBER 0.04 SPECIFIC SPEED 99.07		
SPECIFIC DIAMETER 0.86		
**********	*****	*****
# Q2 TURBINE *	■ 02	PUMP .
EFFICIENCY (T/T) 0.854 EFFICIENCY (T/S) 0.791	EFFICIENCY HODGEROLLED	0.747 581.
SPEED (RPM) 67533.	SPEED (R	PM) 67533.
HORSEPONER 581. HEAN DIA (IN) 2.60 EFF AREA (IN2) 0.55	SS SPEED S SPEED	22446.
MEAN DIA (IN) 2.60	S SPEED	(813. FT) 5339.
U/C (ACTUAL) 0.450	HEAD (FT1 5339. IN1 2.15
MAX TIP SPEED 834.	TIP SPEED	635.
STAGES 1	VOL. FLON	281.
GAMMA 1.45 PRESS RATIO (T/T) 1.10	HEAD COEF FLON COEF	0.426 0.154
PRESS RATIO (1/1) 1.10 PRESS RATIO (1/5) 1.11	DIAMETER R	
EXIT MACH NUMBER 0.10	BEARING DN	1.49E+06
SPECIFIC SPEED 48.64	SHAFT DIAM	ETER 22.00
SPECIFIC DIAMETER 1.37		
REGENERATOR D		
COLD SIDE HOT		
	1.19	
DELT 160.89 -16	0.52	
	1.90	
FLOH 7.45 EFFECTIVENESS 0.31	7.44	
NTU 0.47		
CRATIO 1.00		
CHIN 27.13		
REGEN 0 4365.10		

TABLE 47. - FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR - 37,500 LBF THRUST (COPPER GROOVED CHAMBER)

INJECTOR

LOX

**			E PARAMETER		
~	DED DDECC!	oc		1612.0	
	BER PRESSU ENGINE THR			37500.	
	L ENGINE F	LOH RATE		78.12	
	VAC. ISP AT AREA			480.0 11.37	
	LE AREA RA	110		1000.0	
	LE EXIT DI			120.34 6.00	
ENGI ETA	NE HIXTURE CH	RATIO		0.993	
	BER COOLAN	IT DP		694.	
	BER COOLAN			375. 16426.	
NO22	LE/CHAMBER ENGINE		CONDITIONS	10420.	
			**********	***	
STATION	PRESS	TEMP	NDITIONS #	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	11.18	-107.5	4.37
B.P. EXIT	100.9	38.5 38.5 57.2	11.18	-103.0 -103.0	4.39 4.39
PUMP INLET 1ST STAGE EXIT	1675.9	57.2	11.18	-13.9	4.52
2ND STAGE EXIT	3279.3	75.2	11.18	75.0	4.63
PUMP EXIT	4908.3	92.7	11.18 11.18	163.7 163.7	4.72 4.70
COLD REGEN IN COLD REGEN EX COOLANT INLET	3279.3 4908.3 4859.2 4810.6 4810.6 4116.6 4075.4	226.8	11.18	629.7	2.81
COOLANT INLET	4810-4	226.8	11.18	629.7	2.81
COOLANT EXIT	4116.6 4075.4	601.4 601.7	0.56	2099.3 2099.3	1.11
TBV INLET TBV EXIT 02 TRB INLET 02 TRB EXIT 12 TRB INLET 142 TRB EXIT 142 TRB DIFFUSER	1860.5	613.9	0.56	2099.3	0.53
02 TRB INLET	4075.4	601.7 589.5 589.5	10.62	2099.3	1.10
02 TRB EXIT	3662.2	589.5 589.5	10.62 10.62	2046.1 2046.1	1.02
H2 TRB EXIT	2006.9	521.2	10.62	1765.3	0.67
HZ TRB DIFFUSER	1966.7	521.4	10.62	1765.3 1765.3	0.65 0.65
H2 BST TRB IN H2 BST TRB BUT H2 BST TRB BIFF C2 BST TRB IN	1947.0	521.4	10.62 10.62 10.62 10.62	1760.5	0.64
HZ BST TRB BIFF	1901.6	520.4	10.62	1760.5	0.64
02 BST TRB IN 02 BST TRB OUT	1882.6 1871.8	520.4 519.8	10.62 10.62	1760.5 1758.0	0.63
		519.8	10.62	1758.0	0.63
HE TANK PRESS	18.6	532.0	0.0169 11.16 11.16 11.16	1775.0	0.0066
GOX HEAT ENCH IN	1860.5	524.5 524.2	11.16	1775.0 1773.7	0.62 0.62
HOT REGEN IN	1851.2	524.2	11.16	1773.7	0.62
HOT REGEN EX FSOV INLET FSOV EXIT CHANGER INJ	1795.7	399.3	11.16	1307.0	0.78
FSOV INLET	1795.7 1750 B	399.3 399.4	11.16 11.16	1307.0 1307.0	0.78 0.76
CHAMBER INJ	1733.3	399.5	11.16	1307.0	0.75
CHWIGHER				_	
STATION	# OXY	GEN SYSTEM	CONDITIONS FLOH	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	67.1	61.9	70 99
B.P. EXIT	135.2	165.3	67.1	ENTHALPY 61.9 62.3 62.3	70.84 70.84
PUMP INLET PUMP EXIT	135.2 2610.7	165.3 176.6	67.l 67.1	62.3 70.8	71.40
OC TANK PRESS	16.0	400.0	0.114	204.7	0.12
OSOV INLET	2584.6	176.7	10.0	70.8 70.8	71.36 70.14
OSOV EXIT	1809.2 2584.6	179.6 176.7	10.0 56.9	70.8	71.36
OCY EXIT	1809.2	179.6	56.9	70.8	70.14
CHWHBER INJ	1791.1	179.7	67.0	70.8	70.12
CHAMBER	1612.0	■ VALVE DA	ATA .		
VALVE	DELTA P	AREA	FLOH 0.54	% BYPASS 5 00	
TBV FSOV	2215. 45.	0.02 2.75	0.56 11.16	5.00	
OCV	775.	0.36	66.96		

. INJECTOR DATA .

FLOW 11.16 66.96

AREA

1.75 0.89

DELTA P

121. 179.

TABLE 47. — FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR — 37,500 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

4+4+4++++++	***********	
 TURBOHACHI 	ERY PERFORMANCE DATA .	

* H2 8005T TURBINE *	442 80057 0	
*****************	• H2 BOOST P	
EFFICIENCY (T/T) 0.795	EFFICIENCY HORSEPOHER	0.765
EFFICIENCY (T/S) 0.358	HORSEPOHER	72. 33756.
SPEED (RPM) 33756. MEAN DIA (IM) 1.44	SPEED (RPM) S SPEED	33756.
MEAN DIA (IN) 1.44 EFF AREA (IM2) 4.01 U/C (ACTUAL) 0.434	S SPEED (FT)	3045. 2702.
U/C (ACTUAL) 0.434	HEAD (FT) DIA. ([N]	2.98
MAN TIP SPEED \$24.	TIP SPEED	440.
	VOL. FLOM	1143.
PRESS PATIO (T/T) 1 MI	HEAD COEF FLOH COEF	0.450
PRESS RATIO (T/S) 1.03	read cater	0.201
GAMMA 1.36 PRESS RATIO (T/T) 1.01 PRESS RATIO (T/S) 1.03 HORSEPOMER 72.		
HORSEPOHER 72. EXIT MACH NUMBER 0.14 SPECIFIC SPEED 123.78		
SPECIFIC SPEED 123.78 SPECIFIC DIAMETER 0.48		
	********	•
# H2 TURBINE #	* H2 PUMP	
	STACE (NA	STAGE THO STAGE THREE

EFFICIENCY (T/T) 0.870	EFFICIENCY 0.730	0.728
EFFICIENCY (T/S) 0.835	HORSEPONER 1409.	1407. 1402.
EFFICIENCY (T/S) 0.855 SPEED (RPW) 107143. HORSEPOHER 4218. HEAN DIA. (IM) 2.95 EFF AREA (IN2) 0.51 U/C (ACTUAL) 0.516	SPEED (RPM) 107143. SS SPEED 11885. S SPEED 1058. HEAD (FT) 50591. DIA. (IN) 3.79	107143. 107143.
MEAN DIA. (IN) 2.91	S SPEED 11885.	1049. 1042.
MEAN DIA. (IN) 2.93 EFF AREA (IN2) 0.51 U/C (ACTUAL) 0.516 MAX TIP SPFFD 1493	HEAD (FT) 50591.	50407. 50141.
U/C (ACTUAL) 0.516	DIA. (IN) 3.79	3.79 3.79
STAGES 2 GAMMA 1.36	VOL. FLOW 1110. HEAD COEF 0.517	1084. 1062. 0.515 0.512
PRESS RATIO (T/T) 1.82	HEAD COEF 0.517 FLOH COEF 0.114	0.515
PRESS RATIO (1/1) 1.82 PRESS RATIO (1/5) 1.87 EXIT MACH NUMBER 0.18 SPECIFIC SPEED 57.56 SPECIFIC DIAMETER 1.33	DIAMETER RATIO 0.400	
EXIT MACH NUMBER 0.18	BEARING DN 3.00E-06	
SPECIFIC DIAMETER 1.33	SHAFT DIAMETER 28.00	
******************	*********	
# 02 BOOST TURBINE #	• 02 800ST PU	
EFFICIENCY (T/T) 0.875	FEETCHENCY	0.747
EFFICIENCY (T/S) 0.705	EFFICIENCY HORSEPOWER	39.
SPEED (RPM) 9016.	SPEED (RPM)	39. 9016. 3026. 242.
MEAN DIA (IN) 4.11 EFF AREA (IN2) 5.88	S SPEED	3026.
U/C (ACTUAL) 0.450	HEAD (FT) Dia. (in)	242. 3.34
MAX TIP SPEED 197.	TIP SPEED	132.
STAGES 1	VOL. FLOH	625.
GAPHA 1.36	HEAD COEF FLOH COEF	0.450
PRESS RATIO (T/T) 1.01 PRESS RATIO (T/S) 1.01	FLON COEF	0.200
EXIT MACH NUMBER 0.04		
EXIT MACH NUMBER 0.04 SPECIFIC SPEED 91.86 SPECIFIC DIAMETER 0.77		
SPECIFIC DIAMETER 0.77		
********	********	
# 02 TURBINE #	* 02 PUMP *	
444444444444		
EFFICIENCY (T/T) 0.853 EFFICIENCY (T/S) 0.778	EFFICIENCY HORSEPOHER	0.760
SPEED (RPM) 55362.	SPEED (RPH)	53362.
HORSEPONER 800. HEAN DIA (IM) 2.93 EFF AREA (IM2) 0.73	SS SPEED S SPEED	21723.
HEAN DIA (1H) 2.93	S SPEED	1845.
EFF AREA (IN2) 0.73 U/C (ACTUAL) 0.417	MEAD (FT)	4991.
MAX TIP SPEED 745.	DIA. (IN) TIP SPEED	2.62 610.
STAGES 1	VOL. FLOH	422.
GAPMA 1.36	HEAD COEF	0.431
PRESS RATIO (T/T) 1.11 PRESS RATIO (T/S) 1.12	FLOW COEF BIAMETER RATIO	0.155 0.683
EXIT MACH NUMBER 0.11		.39E+06
SPECIFIC SPEED 45.99	SHAFT DIAMETER	26.00
SPECIFIC DIAMETER 1.34		
REGENERATOR DAT	•	

COLD SIDE HOT SI	DE	
DELP 48.59 55,	54	
DELT 155.71 -124. AREA 8.77 2.		
FLOW 11.18 11.		
EFFECTIVENESS 0.31		
NTU 0.46		
CRATIO 0.93 CMIN 38.95		
REGEN Q 5207.88		

TABLE 48. - FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR - 50,000 LBF THRUST (COPPER GROOVED CHAMBER)

FUEL. LOX

***			PARAMETERS		
Cund	BER PRESSU	D.C.		1506.0	
	ENGINE THR			50000.	
	L ENGINE F			104.16	
DEL.	VAC. ISP			480.0	
	AT AREA			16.23	
	LE AREA RA			1000.0 143.74	
	LE EXIT DI NE MIXTURE			6.00	
ETA (RAITO		0.993	
	BER COOLAN	T DP		601.	
	BER COOLAN			335.	
NOZZI	LE/CHAMBER	Q		19840.	
			CONDITIONS	# H H	
			e ZHOITIONS #		
MOITATZ	PRESS	TEMP		ENTHALPY	DENSITY 4.37
B.P. INLET	18.6	37.4	14.91 14.91	-107.5 -103.0	4.37
B.P. EXIT PUMP INLET	100.8 100.8	38.5 38.5	14.91	-103.0	4.39
	1577 /	54.5	14.91	-24.6	4.54
2ND STAGE EXIT	3006.6	69.8	14.91	54.0	4.66
PUMP EXII	4508.4	84.9	14.91	132.6	4.76
COLD REGEN IN	4463.4	85.3	14.91	132.6 536.0	4.74 2.88
COLD REGEN EX	4418.7 4418.7	205.3 205.3	14.91 14.91	536.0	2.88
COOLANT INLET	3817.7	540.3	14.91	1867.0	1.14
	3779.5	540.5	0.75	1867.0	1.13
TBV EXIT	1738.1	550.3	0.75	1867.0	0.55
02 TRB INLET	3779.5	540.5	14.16	1867.0	1.13
02 TRB EXIT	3401.6	529.1	14.16	1818.0 1818.0	1.05
H2 TRB INLET HC TRB EXIT	3401.6 1900.6	529.1 468.3	14.16 14.16	1570.1	0.70
HE TRE DIFFUSER	1855.0	468.5	14.16	1570.1	0.69
	1836.4	468.5	14.16	1570.1	0.69
H2 BST TRB OUT	1811.9	467.4	14.16	1565.3	0.67
	1778.7	467.5	14.16	1565.3	0.66
	1760.9	467.6 466.9	14.16 14.16	1565.3 1562.7	0.65
	1749.6 1746.8	466.9	14.16	1562.7	0.65
HZ TANK PRESS	18.6	476.8	0.0250	1578.0	0.0074
GOX HEAT EXCH IN		471.0	14.88	1578.0	0.64
GOX HEAT EXCH OUT	1729.4	470.7	14.88	1576.6	0.64
HOT REGEN IN	1729.4	470.7	14.88	1576.6 1172.5	0.64 0.79
HOT REGEN EX	1677.5 1677.5	365.3 365.3	14.88 14.88	1172.5	0.79
FSOV INLET FSOV EXIT	1635.6	365.4	14.88	1172.5	0.78
CHAMBER INJ	1619.2	365.4	14.88	1172.5	0.77
CHAMBER	1506.0				
			CONDITIONS		DOME ! THE
MOLTATE	PRESS			ENTHALPY 61.9	DENSITY 70.99
B.P. INLET B.P. EXIT	16.0 135.2	162.7 165.3	89.4 89.4	62.3	70.84
PUMP INLET	135.2	165.3	89.4	62.3	70.84
PUMP EXIT	2439.0	175.5	89.4	70.1	71.39
02 TANK PRESS	16.0	400.0	0.152	204.7	0.12
OSOV INLET	2414.6	175.6	13.4	70.1	71.36
OSOV EXIT	1690.2	178.4	13.4	70.l	70.22 71.36
OCV INLET	2414.6	175.6 178.4	75.9 75.9	70.1 70.1	70.22
OCV EXIT CHAMBER INJ	1690.2 1673.3	178.4	89.3	70.1	70.19
CHAMBER INS	1506.0	•			
		* VALVE DA	ITA .		
			6 . 6 .	* BUALCC	
VALVE	DELTA P		FLOW 0.75	% BYPASS 5.00	
TBV	2041. 42.			3.00	
FSOV OCV	724.				
		INJECTOR			
INJECTOR	DELTA P	AREA 2.58	FLOH		
616			1 4 . 00		

2.38

89.28

TABLE 48. — FULL-EXPANDER ENGINE WITH HYDROGEN REGENERATOR — 50,000 LBF THRUST (COPPER GROOVED CHAMBER) (CONTINUED)

	ERY PERFORMANCE DATA			
***************	*****	******		
* H2 BOOST TURBINE *		BOOST PU		
EFFICIENCY (T/T) 0.770		******		
EFFICIENCY (T/S) 0.272	EFFICIEN HORSE PO N	ER	96.	
SPEED (RPH) 29226.	SPEED	(RPH)	29226.	
MEAN DIA (IN) 5.44 EFF AREA (IN2) 5.02	S SPEED HEAD		3045. 2701.	
U/C (ACTUAL) 0.376	HEAD DIA.	(IN)	3.44	
MAX TIP SPEED 290.	TIP SPEE	D	437.	
STAGES 1 GAMMA 1.38	VOL. FLOI HEAD CORE	H F	1524. 0.450	
PRESS RATIO (T/T) 1.01	FLOM COE	·	0.201	
PRESS RATIO (T/S) 1.04				
HORSEPOHER 96. EXIT MACH NUMBER 0.17				
SPECIFIC SPEED 103.11				
SPECIFIC DIAMETER 0.46				
********	•••	******	1	
# H2 TURBINE 4		2 PUMP .		
*44446664				
				STAGE THREE
EFFICIENCY (T/T) 0.885 EFFICIENCY (T/S) 0.842	EFFICIENCY	0.754	0.752	0.750
EFFICIENCY (T/S) 0.842	HORSEPOHER	1653.	1656.	0.750 1658. 100000.
HORSEPOHER 4967.	SPEED (RPM) 16 SS SPEED 1	2000. 2013.	100000.	100000.
MEAN DIA. (1H) 3.08 EFF AREA (IN2) 0.69	S SPEED	1223.	1208.	1196.
EFF AREA (IN2) 0.69 U/C (ACTUAL) 0.540		5957.	45952.	45895.
	DIA. (IN) TIP SPEED	3.95 1718.	3.95 1710.	3.93 1718.
STAGES 2	VOL. FLOH	1472.	1436.	1405.
GAPMA 1.58 PRESS RATIO (T/T) 1.79		4.501	0.501	0.500
PRESS RATIO (T/T) 1.79 PRESS RATIO (T/S) 1.85	DIAMETER RATIO	0.124 0.441		
EXIT MACH MUMBER 0.20	BEARING DH 3.0	9€+06		
SPECIFIC SPEED 66.39 SPECIFIC DIAMETER 1.22	SHAFT DIAMETER	30.00		
SPECIFIC DIAMETER 1.22				

* OZ BOOST TURBINE «		OOST PUM		
EFFICIENCY (T/T) 0.865	EFFICIENC	v	0.764	
EFFICIENCY (T/S) 0.652	EFFICIENC HORSEPONE	R	52.	
SPEED (RPH) 7808.	SPEED (RPH)	7808.	
EFF AREA (IN2) 7.50	S SPEED HEAD	(FT)	3026. 242.	
MEAN DIA (IN) 4.11 EFF AREA (IN2) 7.50 U/C (ACTUAL) 0.390	HEAD DIA.	(INI)	5.86	
MAX TIP SPEED 176. STAGES	TIP SPEED		132.	
GAMMA 1.38	VOL. FLON HEAD COEF		567. 0.450	
PRESS RATIO (T/T) 1.01	HEAD COEF FLOH COEF		0.200	
PRESS RATIO (T/S) 1.01 HORSEPOHER 52.				
EXIT MACH HUMBER 0.05				
SPECIFIC SPEED 84.96				
SPECIFIC DIAMETER 0.71				

• OZ TURBINE •		PUMP .		
EFFICIENCY (T/T) 0.887		,	0.769	
EFFICIENCY (T/S) 0.832	EFF1C1ENC	t	982.	
SPEED (RPH) 44714,	SPEED (A		44714.	
HORSEPOMER 982. HEAN DIA (IN) 3.08 EFF AREA (IN2) 1.01	22 SPEED 22 SPEED		21019. 1885.	
EFF AREA (IN2) 1.01	MEAN (ET1	4645.	
U/C (ACTUAL) 0.543	DIA. ((N)	3.01	
MAX TIP SPEED 679. STAGES 2	TIP SPEED VOL. FLON		587. 562.	
GA447 1.28	HEAD CORF		0.434	
PRESS RATIO (T/T) 1.11	FLOM CORF		0.157	
PRESS RATIO (T/S) 1.12 EXIT MACH HUMBER 0.09	DIAMETER R BEARING ON	ATIO	0.684	
SPECIFIC SPEED 78.07	SHAFT DIAM		00.02	
SPECIFIC DIAMETER 1.06				
REGEMERATOR DATA				
444444444444444444444444444444444444444	_			
COLD SIDE HOT SID DELP 44.64 51.8				
DELT 119.92 ~105.3				
AREA 1.87 5.7	1			
FLOM 14.91 14.81 EFFECTIVENESS 0.51	3			
NTU 0.46				
CRATIO 0.88				
CMIN 50.14 REGEN Q 6012.47				
1012.37				

APPENDIX C THROTTLED CYCLES

Throttled cycle data are presented in Tables 49 through 56.

TABLE 49. — ADVANCED ENGINE PARAMETRIC STUDY SPLIT-EXPANDER ENGINE 100% OF DESIGN THRUST LEVEL

SNGINE 1007			E PARAMETER		
**			**********		
	BER PRESSU			1612.0	
	ENGINE THR . VAC. ISP			20000. 480.0	
TOTA	AL ENGINE F			41.7	
	DAT AREA ZLE AREA RA	TIO		6.066 1000.8	
	INE MIXTURE			6.00	
	MBER/NOZZLE			583.	
CHA! ETA	IBER/NOZZLE	COOLANT	DI	1018. 0.993	
	MBER/NOZZLE	0		11170.	
			CONDITIONS	***	
			* ZMCITIONS	ENTHALPY	DENSITY
STATION B.P. INLET	PRESS 18.6	TEMP 37.4	FLOH 5.96	-107.5	4.37
B.P. EXIT	100.9	38.5	5.96	-103.0	4.39
PUMP INLET	100.9	38.5 70.3	5.96 5.96	-103.0 34.1	4.39 4.36
1ST STAGE EXIT JBV INLET	2177.3 2133.8	70.7	2.98	34.1	4.33
JBV EXIT	1813.9	73.1	2.98	34.1	4.11
2ND STAGE EXIT	3487.5	90.9	2.98 2.98	123.8 210.3	4.35 4.37
PUMP EXIT	4762.3 4714.6	110.4 110.8	2.70	210.3	4.35
COOLANT EXIT	4131.6	1128.8	2.98	3965.9	0.63
TBV INLET	4090.3	1129.1	0.15 0.15	3965.9 3965.9	0.62 0.30
TBV EXIT	1899.9 4090.3	1129.1	2.03	3965.9	0.62
LOX TRB EXIT	3612.5	1101.3	2.83	3856.6	0.57
H2 TRB INLET	3612.5	1101.3 976.9	2. 83 2. 83	3856.6 33 8 2.6	0.57 0.37
H2 TRB EXIT	2011.4 1990.1	977.1	2.83	3382.6	0.36
H2 BST TRB IN	1970.2 1947.4	977.2		3382.6	0.36
H2 BST TRB EXIT		974.6 974.7	2.83 2.83	3373.1 3375.1	0.36
H2 BST TRB DIFF O2 BST TRB IN	1923.1	974.B	2.83	3373.1	0.35
OZ BST TRB EXIT	1911.2	973.4	2.83	3367.9	0.35 0.35
02 BST TRB DIFF		973.4	2.83 0.0048	3367.9 3398.0	0.0035
H2 TANK PRESS GOX HEAT EXCH IN		382.1	2.97	3398.0	0.35
GOX HEAT EXCH OU	T 1890.4	981.4	2.97	3395.2	0.35 0.35
MIXER HOT IN MIXER COLD IN	1890.4 1813.9	981.4 73.1	2.97 2.98	33 95. 2 34.1	4.11
MIXER OUT	1795.8	508.0	5.95	1713.8	0.62
FSV INLET	1795.8	508.0	5.95	1713.8	0.62 0.60
FSV EXIT CHAMBER INJ	1750.9 1733.4	508.2 508.2	5.95 5.95	1713.8 1713.8	0.60
CHAMBER	1612.0				
			CONDITIONS		DENSITY
STATION B.P. INLET	PRESS lb.0	TEMP 152.7	FLON 35.77	61.1	71.17
B.P. EXIT	135.2	163.3		61.5	71.20
PUMP INLET	135.2	163.3	35.77 35.77	61.5 70.1	71.20 71.65
PUMP EXIT 02 TANK PRESS	2612.1 16.0	174.9 400.0	0.86	204.8	0.12
POSV INLET	2586.0	175.0	5.17	70.1	71.61
POSV EXIT	1795.6	178.0 175.0	5.17 30.55	70.1 70.1	70.38 71.61
OCV INLET	2586.0 1811.7	178.0		70.1	70.41
PRIMARY INJ	1762.1	178.2		70.1	70.33
SECONDARY INJ	1775.2 1612.0	178.1	30.55	70.1	70.35
CHAMBER					
		_VE DATA			
VALVE	DELTA P	4REA		BYPASS	
JBV	358.			49. 98 5.02	
TBV FSV	2190. •5.		0.15 5. 95	3.02	
POSV	79 0. 774.	1.032	5.17		
	: 4.	ECTOR DATA	4		
• FUEL		XO +			
	- 5	: MARY	SECOND		
DELP MAN 18.		6 8 3.37	18.14 163.21		
DELP INJ 103. AREA 1.	14	08	0.43		
FLOH 5.		5.17	30.55		

TABLE 49. — ADVANCED ENGINE PARAMETRIC STUDY SPLIT-EXPANDER ENGINE 100% OF DESIGN THRUST LEVEL (CONTINUED)

			PERFORMANCE DATE			
	******		*****			
*******			****	******		
			# H2	BOOST PA	MP =	
	********			*******		
EFFICIENCY HORSEPOHER SPEED (RPM)	0.95	7				
HODGEBOHED	70	•	FLLICIE	INCY HER	70	
HUKSEPUNEK	36	•	HUKSEPU	MEK	38.	
SPEED (RPM)	46158	•	SPEED	(RPM)	46158.	
MEAN DIA (IN)	1.90	0	S SPEED)	3839.	
EFF AREA (IN2)	1.4	5	HEAD	(FT)	2703.	
U/C (IDEAL)	0.512	2	DIA.	(IN)	2.18	
MEAN DIA (IN) EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED	382		TIP SPE	(FT) (IN) ED	439.	
			VUL. FL	UM		
CELTA H (ACT)	9.5	b	HEAD CO	EF EF	8.452	
GA MMA	1.43	3	FLOW CO	EF	0.201	
PRESS RATIO (T/	T) 1.01	1				
********				******		
# H2 TURBIN	E +			H2 PUT		
*********				******		
		STAGE S				STAGE THREE
	31702	STAGE 2	_			
EEEICIENCA	0.005	0.00	EEEICIENCY -	0 (63	A (2)	0 /2/
HODGEBOHER	0.803	0.606	FLLICIENCE	0.842	730	0.626
HURSEPUNER	950.	948.	HURSEPUWER	1155.	3/8.	365.
SPEED (RPM)	124983.	124983.	SPEED (RPM)	124983.	124983.	124983.
MEAN DIA (IN)	3.47	3.47	S SPEED	731.	730.	744.
EFF AREA (IN2)	0.21	0.26	HEAD (FT)	68 442 .	43325.	42101.
U/C (IDEAL)	0.493	0.494	DIA. (IN)	3.49	3.02	3.02
MAX TIP SPEED	1895.	1895.	TIP SPEED	2012.	1647.	1647.
DELTA H	237.	237.	VOL. FLOW	613.	307.	306.
GAMMA (ACT)	1.43	1.43	HEAD COEF	0.544	0.514	0.499
EFFICIENCY HORSEPOHER SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED CELTA H GAMMA (ACT) PRESS RATIO(T/T	1.33	1.35	FLOW COEF	0.092	0.092	0.093

• 02 800ST				BOOST PUR		

EFFICIENCY HORSEPOWER SPEED (RPM)	0.959		SEETCIEN	acv	0.764	
PUBSEBURED	71		EFFICIEN HORSEPO	4C 1	21.	
COEED (DOM)	1272/		HORSEPON SPEED S SPEED	(DDM)	12724	
SPEED (KPH)	12324.		SPEED	(RPH)	12324.	
TEAN DIA (IN)	5.20		5 SPEED	. == .	5024.	
EFF AREA (IN2)	2.02		HEAD	(FT)	241.	
SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED STAGES SPETA H (ACT)	0.512		HEAD DIA. TIP SPEE	(IN)	2.44	
MAX TIP SPEED	280.		TIP SPEE	D	131.	
STAGES	ì.		VOL. FLO)H	226. 0.451	
D.C	3		HEAD COE	F	0.451	
JAMMA	1.43		VOL. FLO HEAD COE FLOW COE	F	0.200	
PRESS RATIO (T/T	1.31					
********				******		
# 02 TURBINE				2 PURP =		
********				*****		
					9.740	
EFFICIENCY HORSEPOWER	439.		EFFICIEN HORSEPON	FR.	438	
SPEED (RPM)	74nnse		HORSEPOW SPEED S SPEED	(RPM)	74009	
GPEED (RPM) MEAN DIA (IN)	3.47		C CPEED		1870	
SEE ADEA (IN)	0.47		2 24550	(ET)	4074	
EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED	0.410		HEAD DIA.	(144	47/8.	
TAY TID COCED	0.430		JIA.	CIM)	1.90	
TACES	1122.		TIP SPEE		615.	
TAGES			VOL. FLO	H -	224.	
TELTA H (ACT) BAMMA	109.27		HEAD COE FLOW COE	-	0.423	
			FLOW COE	۲	0.157	
PESS RATIO (T/T	1 :.15					

TABLE 50. — ADVANCED ENGINE PARAMETRIC STUDY SPLIT-EXPANDER ENGINE 50% OF DESIGN THRUST LEVEL

ENGINE	PERFORMANCE	PARAMETERS

CHAMBER PRESSURE	801.9
VAC ENGINE THRUST	10000.
DEL. VAC. ISP	479.7
TOTAL ENGINE FLOW RATE	20.8
THROAT AREA	6.066
NOZZLE AREA RATIO	1000.0
ENGINE MIXTURE RATIO	6.00
CHAMBER/NOZZLE COOLANT DP	547.
CHAMBER/NOZZLE COOLANT DT	730.
ETA C*	0.993
CHAMBER / NO.271 F 0	6340.

ENGINE STATION CONDITIONS

	*****	********	*********	* # * *	
	* FUEL	_ SYSTEM CON	DITIONS *		
STATION	PRESS	TEMP	FLON	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	2.98	-107.5	4.37
B.P. EXIT	66.0	38.2	2.98	-104.5	4.38
PUMP INLET	66.0	38.2	2.98	-104.5	4.38
1ST STAGE EXIT	1345.6	60.5	2.98	-13.0	4.27
JBV INLET	1343.4	60.6	0.66	-13.0	4.27
JBV EXIT	908.0	63.3	0.66	-13.0	3.89
2ND STAGE EXIT	1998.7	71.4	2.33	33.1	4.25
PUMP EXIT	2627.5	81.8	2.33	77.3	4.24
COOLANT INLET	2597.6	82.0	2.33	77.3	4.22
COOLANT EXIT	2050.2	811.8	2.33	2803.9	0.45
TBV INLET	2014.9	812.0	0.71	2803.9	0.44
TBV EXIT	997.3	818.4	0.71	2803.9	0.22
LOX TRB INLET	2014.9	812.0	1.61	2803.9	0.44
LOX TRB EXIT	1788.8	792.9	1.61	2731.2	0.40
H2 TRB INLET	1788.8	792.9	1.61	2731.2	0.40
H2 TRB EXIT	1051.3	712.3	1.61	2431.9	0.27
H2 TRB DIFF	1041.7	712.4	1.61	2431.9	0.27
H2 BST TRB IN	1032.9	712.4	1.61	2431.9	0.26
H2 BST TRB EXIT	1022.6	710.9	1.61	2426.4	0.26
H2 BST TRB DIFF	1020.4	710.9	1.61	2426.4	0.26
02 BST TRB IN	1011.8	711.0	1.61	2426.4	0.26
02 BST TRB EXIT	1006.4	710.2	1.61	2423.4	0.26
02 BST TRB DIFF	1006.1	710.2	1.61	2423.4	0.26
H2 TANK PRESS	18.6	749.3	0.0032	2540.0	0.0047
GOX HEAT EXCH IN	997.3	743.4	2.32	2540.0	0.24
GOX HEAT EXCH OUT	989.1	743.0	2.32	2538.2	0.24
MIXER HOT IN	989.1	743.0	2.32	2538.2	0.24
MIXER COLD IN	908.0	63.3	0.66	-13.0	3.89
MIXER OUT	907.1	584.2	2.98	1976.3	0.28
FSV INLET	907.1	584.2	2.98	1976.3	0.28
FSV EXIT	881.4	584.3	2.98	1976.3	0.27
CHAMBER INJ	871.8	584.3	2.98	1976.3	0.27
CHAMBER	801.9				

	* OXY	GEN SAZIEM	CONDITION	> *	
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	17.90	61.1	71.17
B.P. EXIT	84.3	163.1	17.90	61.3	71.17
PUMP INLET	84.3	163.l	17.90	61.3	71.17
PUMP EXIT	1800.0	172.6	17.90	67.9	71.28
02 TANK PRESS	16.0	400.0	0.03	204.8	0.12
POSY INLET	1793.4	172.6	5.20	67.9	71.27
POSV EXIT	989.0	175.6	5.20	67.9	69.97
OCV INLET	1793.4	172.6	12.67	67.9	71.27
OCV EXIT	836.5	176.2	12.67	67.9	69.72
PRIMARY INJ	954.8	175.7	5.20	67.9	69.91
SECONDARY INJ	830.2	176.2	12.67	67.9	69.71
CHAMBER	801.9				

	VAL	VE DATA		
	***	*****		
VALVE	DELTA P	AREA	FLOM	% BYPASS
JBV	436.	0.023	0.66	22.00
TBV	1018.	0.072	0.71	30.63
FSV	26.	1.653	2.98	
POSV	804.	0.032	5.20	
OCV	957.	0.073	12.67	

	INJECTOR DATA				
	* FUEL *	*	OXID *		
		PRIMARY	SECOND		
DELP MAN	10.05	16.99	3.15		
DELP INJ	59.81	152.91	28.32		
AREA	1.14	0.08	0.43		
FLON	2.98	5.20	12.67		

TABLE 50. — ADVANCED ENGINE PARAMETRIC STUDY SPLIT-EXPANDER ENGINE 50% OF DESIGN THRUST LEVEL (CONTINUED)

	* TURBOMA	CHINERY PI	KNANKKANNANKA ERFORMANCE DATA KANKKANKANANA	. *		
*******				*****	***	
* H2 BOOST T				BOOST PU		
* 112 00031 1				******		
EFFICIENCY			EFFICIEN			
EFFICIENCY	0.784		HORSEPON		13.	
HORSEPOWER SPEED (RPM)	13.			(RPM)		
	30494.				2148.	
MEAN DIA (IN)			S SPEED		1560.	
EFF AREA (IN2)	1.45		HEAD DIA.	(71)		
U/C (IDEAL)					2.18	
MAX TIP SPEED			TIP SPEE		290.	
STAGES	1.		VOL. FLO		306.	
DELTA H (ACT)			HEAD COE		0.597	
GAMMA	1.39		FLOW COE	F	0.153	
PRESS RATIO (T/T	1.01					
********				******		
* H2 TURBINE				H2 PUMP		
********				*******		
		STAGE 2				STAGE THREE
	*****	*****	**	****	*******	********
EFFICIENCY	0.766	0.775	EFFICIENCY	0.602	0.615	0.620
HORSEPOWER	347.	336.	HORSEPOWER	386.	152.	145.
SPEED (RPM)	92001.	92001.	SPEED (RPM)	92001.	92001.	92001.
MEAN DIA (IN)	3.47	3.47	S SPEED	547.	796.	818.
EFF AREA (IN2)	0.21	0.26	HEAD (FT)	42849.	22073.	21323.
U/C (IDEAL)	0.442	0.452	DIA. (IN)	3.69	3.02	3.02
MAX TIP SPEED	1395.	1395.	TIP SPEED	1481.	1212.	1212.
DELTA H	152.	147.	VOL. FLOW	313.	245.	246.
GAMMA (ACT)	1.39	1.39	HEAD COEF	0.629	0.483	0.467
EFFICIENCY HORSEPOWER SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED DELTA H GAMMA (ACT) PRESS RATIO(T/T	1.33	1.35	FLOW COEF	0.064	0.100	0.102
*******	*****		***	******	***	
* 02 BOOST T	URBINE *		* 02	BOOST PU	MP #	
	*******		****	******	***	
EFFICIENCY HORSEPOWER SPEED (RPM)	0.784		EFFICIEN	ICY	0.674	
HORSEPOWER	7.		HORSEPON	IER .	7.	
SPEED (RPM)	8074.		SPEED	(RPM)	8074.	
MEAN DIA (IN)	5.20		S SPEED		2129.	
FFF AREA (IN2)	2.02		HEAD DIA.	(FT)	138.	
U/C (IDEAL)	0.512		DIA.	(IN)	2.44	
SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED STAGES	183.		TIP SPEE		86.	
STAGES	1.		VOL. FLO)W	113.	
DELTA H (ACT)			HEAD COE		0.602	
GAMMA	1.39		FLOW COE		0.153	
PRESS RATIO (T/T			_			
1 NESS AA110 1171	,					
*********	**		***			
* 02 TURBINE			. (2 PUMP #		
********				*******		
EFFICIENCY	0.777		EFF I CIEN	4CY	0.679	
HORSEPOWER	166.		HODSEDOR	JFD.	166.	
SPEED (RPM)			SPEED	(RPM)	56756.	
MEAN DIA (IN)	3.47		S SPEED		1334.	
EFF AREA (IN2)					3466.	
U/C (IDEAL)			DIA.	(FT) (1N)	1.90	
MAX TIP SPEED	860.		TIP SPEE		472.	
STAGES	1.		VOL. FLO		113.	
			HEAD COE		0.502	
DELTA H (ACT)	1.39		FLOW COE		0.103	
GAMMA PRESS RATIO (T/T			FLUM CUE	-•	5.103	
PRESS RATIO LIVI	1.13					

TABLE 51. — ADVANCED ENGINE PARAMETRIC STUDY SPLIT-EXPANDER ENGINE 10% OF DESIGN THRUST LEVEL

ENGINE	PERFORMANCE	PARAMETERS
********	**********	***********

CHAMBER PRESSURE	158.2
VAC ENGINE THRUST	2008.
DEL. VAC. ISP	478.9
TOTAL ENGINE FLON RATE	4.2
THROAT AREA	6.066
NOZZLE AREA RATIO	1008.8
ENGINE MIXTURE RATIO	6.00
CHAMBER/NOZZLE COOLANT DP	214.
CHAMBER/NOZZLE COOLANT DT	786.
ETA C*	0.993
CHAMPER /MOZZI E IO	1740

			CONDITIONS		
			* ZNOITIONC		
STATION			FLON	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	0.60	-107.5	4.37
B.P. EXIT	25.6			-106.9	4.36
PUMP INLET	25.6			-106.9	4.36
IST STAGE EXIT	25.6 272.9 272.9	37.6 45.2 45.2	0.60	-80.9	4.21
JBV INLET	272 9	45.2	0.00	-80.9	4.21
JBV EXIT	187.6	45.9	0.00	-88.9	4.11
	420.5	48.1	0.60	-69.5	4.19
2ND STAGE EXIT PUMP EXIT	563.0	50.8	0.60	-58.6	4.17
COOLANT EXIT		50.8	0.60	-58.6	4.17
COOLANT EXIT	561.0 347.0 333.5	837.0		2855.1	0.08
TBV INLET	333.5	837.0 837.1	0.36	2855-1	0.07
TBV EXIT	217.1	837.9	0.36	2855.1	0.05
LOX TRB INLET	333.5	837.1	0.23	2855.1	0.07
	305.3		0.23	2818.8	0.87
H2 TRR IN FT	305.3	826.7	0.23	2818.0	0.07
H2 TRR FXIT	224.8	792.0	0.23	2693.9	0.05
H2 TRR DIFF	225 7	792.0		2693.9	0.85
H2 RST TRR IN	222.R	792.0 792.0	0.23	2693.9	0.05
LOX TRB EXIT H2 TRB INLET H2 TRB EXIT H2 TRB DIFF H2 BST TRB IN H2 BST TRB EXIT H2 BST TRB EXIT	221.7	791.5	0.23	2692.2	0.05
H2 BST TRR DIFF	221.5	791.5	0.23	2692.2	0.05
H2 BST TRB DIFF O2 BST TRB IN O2 BST TRB EXIT O2 BST TRB DIFF H2 TANK PRESS GOV HEAT EXCH IN	220.6	791.5	0.23	2692.2	0.05
O2 BST TRR EXIT	220.0	791.3	0.23	2691.4	0.05
O2 BST TRR DIFF	220.6	791 3	0.23 0.0006 0.60	2691.4	0.05
H2 TANK PRESS GOX HEAT EXCH IN	18.6	821.0	0.0006	2791.4	0.0043
GOX HEAT EXCH IN	217.1	819.7	0.60	2791.4	0.05
GOX HEAT EXCH OUT	2144	819.3	0.60	2798.8	0.05
MIXER HOT IN	214 4	819.3	0.60	2790.8	0.05
MIXER COLD IN	187.6	45.9	0.00	-80.9	4.11
MIXER COLD IN MIXER OUT	187.6 187.6 187.6 180.5 178.0		0.60	2790.0	0.04
ESV INLET	187.6	819.5 819.5 819.6	0.60	2798.0	0.84
FSV INLET FSV EXIT	180.5	819.6	0.60 0.60	2798.8	0.04
CHAMBER INJ	178.0	819.6	0.60	2798.8	0.04
CHAMBER	158.2				
	· DXY	EN SYSTEM	CONDITIONS		
STATION	PRESS	TEMP	FLOM	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7			71.17
B.P. EXIT	25.5	162.7 162.8	3.59 3.59 3.59	61.1	71.16
PUMP INLET PUMP EXIT	25.5 25.5	162.8	3.59	61.1	71.16
PUMP EXIT	423.5	167.1	3.59	63.5	70.82
OZ TANK PRESS POSV INLET POSV EXIT OCV INLET DCV EXIT	16.0	400.0	0.01	204.8	0.12
POSV INLET	423.2	167.1 167.9 167.1 168.0	2.68	bJ.5	70.82
POSV EXIT	207.6	167.9	2.68	63.5	70.46
OCV INLET	423.2	167.1	0.90	63.5	70.82
OCV EXIT	158.3	168.0	0.90	63.5	70.38
PRIMARY INJ		167.9	2.68	63.5	70.45
SECONDARY INJ	158.3	0.8a1	0.90	63.5	70.38
CHAMBER	158.2				
		VE DATA			

	DELTA P		FLOW		
J8V	85.	0.000	0.00	D - 00	
TBV	116.	3.233	0.36	61.09	
FSV	٦.	€ 60.:	0.60		
POSV	216.	0.002	2.68		
OCV	265.	0.3:0	0.90		
		CTOR DATA			
	••••	********			

	· FUEL *	•	XID *
		PRIMARY	CECOND
CELP MAN	2.68	49	0.02
DELP INJ	17.10	-3.41	0.14
AREA	1.14	1.08	0.43
FLOW	0.60	2.68	0.90

TABLE 51. — ADVANCED ENGINE PARAMETRIC STUDY SPLIT-EXPANDER ENGINE 10% OF DESIGN THRUST LEVEL (CONTINUED)

	# TURBON	ACHINERY I	PERFORMANCE DAT	ΓA »		

* H2 BOOST	TIRRINE .			BOOST PL		
# H2 BOOST	*******			: BOOS! PI		
FEETCIENCY	0.44	,	EFFICIE			
HUDSEDUMED	0.44.	•	EFFICIE	NCY	0.444	
SPEED (PPM)	10186	•	HORSEPO	(RPM)	1.	
MEAN DIA (TM)	10175		SPEED	CRPMI	10195.	
FEE ADEA (THE)	1.50	,	S SPEED		1362.	
U/C (TREAL)	1.92	•	HEAD	(FT)	228.	
MAY TID CREED	0.514		DIA.	(IN)	2.18	
STAGE			TIP SPE	(FT) (IN) ED	97.	
EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED STAGES DELTA H (ACT)	1.		VOL. FL HEAD CO FLOW CO	OM	61. 3.781	
GAMMA	1.41		HEAD CO	EF	3.781	
PRESS RATIO (T/T	1.71		FLOW CO	E.F	0.092	
FRESS RATIO 1171	, 1.01					
********			_		_	
* H2 TURBINE				******		
			•	H2 PUMP	-	
EFFICIENCY HORSEPOHER SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED DELTA H GAMMA (ACT) PRESS RATIO(T/T	STAGE 1	STAGE 2		TAGE ONE	T CTACE TIME	STAGE THREE
	******	*****	5	MOE UNE	STAGE THO	STAGE THREE
EFFICIENCY	0.495	0.538	FEETCIENCY	0.615	0 571	
HORSEPOWER	22.	19	HODSEDONED	0.415	0.5/1	0.5//
SPEED (RPM)	39541	₹9541	SOEED (DOM)	70E/1	70541	7.
MEAN DIA (IN)	3 47	3 47	C CDEED	77341.	57541.	37541.
FFF AREA (IN2)	0.71	0.26	S SPEED	201.	527.	540.
UZC (IDEAL)	0.231	0.258	DIA (IN)	0363.	2061.	4710.
MAX TIP SPEED	599	599	TID COEED	3.67	5.02	3.02
DELTA H	56.	58	VOI FLOW	46	341.	521.
GAMMA (ACT)	1.41	1 41	HEAD COEE	0 444	04.	4.
PRESS RATIO(T/T	1.33	1.35	FLOW COEF	0.044	0.600	0.582
			LON COLF	0.030	3.080	0.062
**********	******		****			
• 02 BOOST TI	URBINE .		* 02	BOOST PUM	(P 4	
********	*******		***	******	***	
EFFICIENCY HORSEPONER SPEED (RPM) MEAN DIA (IN) FFE ARFA (IN2)	0.435		EFFICIEN HORSEPOW	ICY	3.437	
HORSEPOWER	٥.		HORSEPOW	ER	c.	
SPEED (RPM)	2633.		SPEED	(RPM)	2033.	
MEAN DIA (IN)	5.20		S SPEED		1361.	
EFF AREA (IN2)	2.02		HEAD	(FT)	19.	
U/C (IDEAL)	0.512		DIA.	(IN)	2.44	
EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED STAGES	ьО.		HORSEPOW SPEED S SPEED HEAD DIA. TIP SPEE VOL. FLO	D	28.	
STAGES	1.		VOL. FLO	W	23.	
DELTA H (ACT)	0.87		VOL. FLO HEAD COE FLOW COE	F	3.790	
OAMINA	1.41		FLOW COE	F	3.094	
PRESS RATIO (T/T)	1.01					
**********	_					
. 02 TURBINE	_			******		
*********	_			2 PUMP *		
SEETCIENCY	0.614			****		
HORSEPOWER	12		EFFICIENC HORSEPOWE	~ Y	3.452	
EFFICIENCY HORSEPOWER SPEED (RPM)	26519		COEED	ER.	12.	
MEAN DIA (IN)	3 47		SPEED S SPEED	CREMI	277	
EFF AREA (IN2)	0.25		3 SPEED	(ET)	533.	
U/C (IDFAL)	0.212		HEAD DIA.	(TN)	909.	
SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED STAGES	402		TIP SPEEL	(14)	90	
STAGES	1				220.	
DELTA H (ACT)	37.16		HEAD COSE	•	. 677	
GAMMA	1.41		HEAD COEF		1.537 1.044	
PRESS RATIO (T/T)			. COM COEF			
	•					

TABLE 52. — ADVANCED ENGINE PARAMETRIC STUDY SPLIT-EXPANDER ENGINE 5% OF DESIGN THRUST LEVEL

ENGINE	PERFORMANCE	PARAMETERS

CHAMBER PRESSURE	78.6
VAC ENGINE THRUST	1000.
DEL. VAC. 1SP	478.5
TOTAL ENGINE FLON RATE	2.1
THROAT AREA	6.066
NOZZLE AREA RATIO	1000.0
ENGINE MIXTURE RATIO	6.09
CHAMBER/NOZZLE COOLANT DP	96.
CHAMBER/NOZZLE COOLANT DT	891.
ETA C.	0.993
CHAMBER (MD27) F 0	980.

		STATION C			
	*******	OWNER COM	DITIONS .		
STATION	PRESS	TEMP	FLDM	ENTHALPY -107.5	DENSITY
STATION B.P. INLET B.P. EXIT PUMP INLET IST STAGE EXIT JBV EXIT 2ND STAGE EXIT THE EXIT COOLANT INLET TBV INLET TBV INLET TBV EXIT LOX TRB INLET LOX TRB INLET LOX TRB EXIT H2 TRB EXIT H2 TRB EXIT H2 TRB DIFF H2 BST TRB EXIT H2 BST TRB CIFF H2 BST TRB CIFF H3 BST TRB CIFF H4 BST TRB CIFF H4 TANK PRESS GON HEAT EXCH IN TIMER HOT IN MINER COLD IN MINER OUT FSV EXIT CHAMBER INJ CHAMBER I	18.6	37.4	0.30 0.30 0.30 0.20 0.00 0.30 0.30 0.30		4.37
B.P. EXIT	21.3	37.5	0.30	-107.2	4.36
PUMP INLET	21.3	27.5	0.30	-107.2	4.36
IST STAGE EXIT	128.5	41.9	0.30	-93.7	4.26
JBV INLET	128.5	41.9	0.00	-93.7	4.26
JBV EXIT	95.2	42.1	0.00	-93.7 -88.0	4.24
2ND STAGE EXIT	195.0	43.4	0.20	-82.5	4.22
PUMP EXIT	259.3	44.8	0.30	-82.5	4.22
COOLANT INLET	258.8	44.8	0.30	3197.0	0.83
COOLANT EXIT	162.8	730.2	0.21	****	0.83
TRY INCE	111.5	936.6	0.21	3197.0 3197.0 3197.0 3171.8 3171.8	0.02
INV TOP INI ET	154.8	936.3	0.09	3197.0	0.03
LOX TRB FXIT	144.0	929.1	0.09	3171.8	0.03
H2 TRB INLET	144.0	929.1	0.09	3171.8	0.03
H2 TRB EXIT	114.8	906.5	0.09	3092.6 3092.6 3092.6 3091.6	0.02
H2 TRB DIFF	114.4	906.5	0.09	3092.6	0.02
H2 BST TRB IN	114-1	906.5	0.09	3092.6	0.82
H2 BST TRB EXIT	113.7	906.2	0.09	3071.6	0.02
H2 BST TRB DIFF	113.6	906.2	0.09	3091.6 3091.6	0.02
O2 BST TRB IN	113.3	906.2	0.09	3091.1	0.02
02 BST TRB EXIT	113.1	906.1	0.09	7081 1	0.02
02 BST TRB DIFF	113.1	906.1	0.07 0.07	3163.9	0.0938
H2 TANK PRESS	18.6	327.1	0.20	5165.9	0.02
GOX HEAT EXCH IN	1 111.5	926.7	0.30	3162.5	0.82
SIX HEAT EXCH OF	110.0	926.7	0.30	3162.5	0.02
HIVER COLD IN	95.2	42.1	0.00		4.22
MINER DUT	95.2	426.8	0.30	-93.7 3162-5 3162.5	0.82
ESV INLET	95.2	926.8	0.30	3162.5	0.02
FSV EXIT	91.2	926.8	0.30	3162.5 3162.5	0.02
CHAMBER INJ	8.8	926.8	0.30	3162.5	0.02
CHAMBER	78.6				
				٠.	
	POESS	JEN STOLET	FLOW	ENTHALPY 61.1	DENSITY
STATION	14 O	162.7	1.79	61.1	71.17
B.P. INLET B.P. EXIT	19.6	152.7	1.79	61.1	
9.P. EXIT PUMP INLET PUMP EXIT D2 TANK PRESS POSV INLET POSV EXIT CCV INLET	19.6	162.7 162.7 162.7 165.2	1.79	61.1	71.16
PIMP FXIT	196.1	165.2	1.79 5.30	62.4	70.91
02 TANK PRESS	16.0	-00.0	1.30	204.8	0.12
POSY INLET	196.0	65.2	1.79	62.4	70.91
POSV EXIT	100.4	105.0	1.79	52.4	70.75
CCV INLET	196.0	165.2	0.00	62.4 62.4	70.91 70.72
CV EXIT	78.6	. 5 . 6	0.00	62.4	70.75
PRIMARY INJ	96.4	. 05.0	1.79	62.4	70.72
	7B.6	. 25 . 0	,.00	32.7	
CHAMBER	78.6				
		LVE DATA			
		******	E. 01:	a DVDACC	
VALVE	Dr.CTA P	AREA	FLOW	BYPASS 0.00	
	33.	. 300	3.00	68.78	
134	43.	1.315	0.30	00.70	
= 3 V	-	272	1.79		
POSV	٠٠.		0.00		
∂ CV		.000 2.315 .653 1.032 2.000	3.55		
	1.2	E TOR DATA	7		
+ FUE		+ 0x1			
		: MARY	3.G0		
DELP MAN !	.51		3.00		
DELP INJ 9	. 73		0.45		
AREA 1	. 14	3.5 8	0.30		
≓LOM 0	.30				

ORIGINAL PROS 15 OF POOR QUALITY

TABLE 52. — ADVANCED ENGINE PARAMETRIC STUDY SPLIT-EXPANDER ENGINE 5% OF DESIGN THRUST LEVEL (CONTINUED)

			ERFORMANCE DATA			
			***********	4 8		
********				******	***	
* H2 BOOST T				BOOST PU		
*******			****	*****		
EFFICIENCY	0.314		EFFICIEN HORSEPOH	ICY	0.376	
HORSEPOHER	0.		HORSEPON	ER	0. 6152. 1187.	
SPEED (RPM)	6152.		SPEED S SPEED HEAD DIA. TIP SPEE	(RPM)	6152.	
MEAN DIA (IN)			S SPEED		1187.	
EFF AREA (IN2)	1.45		HEAD	(FT)	88.	
U/C (IDEAL)			DIA.	(IN)	2.18	
MAX TIP SPEED			TIP SPEE	D	58. 31.	
STAGES	1.		VOL. FLO)M	0.828	
DELTA H (ACT)	0.97		HEAD COE	r	0.076	
GAMMA	1.43		HEAD COE	·r	0.070	
PRESS RATIO (T/T) 1.01					
*********			4.4	******	•	
* H2 TURBINE			•	H2 PUMP	•	
			**	******	=	
	STAGE L	STAGE 2	51	AGE ONE	STAGE THO	STAGE THREE
	*****	*****	41	*****	*******	******
EFFICIENCY HORSEPOWER SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED DELTA H GAMMA (ACT) PRESS RATIO(T/T	0.370	0.417	EFF ICIENCY	0.340	0.508	0.515
HORSEPOMER	6.	5.	HORSEPOWER	6.	2.	2.
SPEED (RPM)	25943.	25943.	SPEED (RPM)	25943.	25943.	25793. 487
MEAN DIA (IN)	3.47	3.47	S SPEED	314.	2257	2190
EFF AREA (IN2)	0.21	0.26	HEAD (F1)	337U.	3 02	3.02
U/C (IDEAL)	0.163	0.188	DIA. (IN)	419	342	342.
MAX TIP SPEED	393.	393.	TIP SPEED	31.	32.	32.
DELTA H	43.	1 43	HEAD COFF	0.662	0.621	0.603
GAMMA (AUT)	1.43	1.45	FILON COEF	0.023	0.046	0.046
PRESS RATIONINI	1.33	1.55				
********			****	*******	* # # #	
* 02 BOOST 1	TURBINE .			BOOST PU		
********	********			*******		
EFFICIENCY HORSEPOWER SPEED (RPM) MEAN DIA (IN)	0.307		EFFICIEN HORSEPON SPEED S SPEED HEAD DIA. TIP SPEE	NCY	0.369	
HORSEPOWER	0.		HORSEPO	HER	U.	
SPEED (RPM)	1579.		SPEED	(RPH)	1199	
MEAN DIA (IN)	5.20 2.02		2 2PEED	(ET)	7	
EFF AREA (IN2)	2.02		DIA	(IN)	2.44	
U/C (IDEAL) MAX TIP SPEED	0.512 36.		TIP SPE	FN	17.	
MAX TIP SPEED	J O .		VOL. FL	OM.	11.	
DELTA H (ACT)	0.49		HEAD COL	EF	0.839	
STAGES DELTA H (ACT) GAMMA	1.43		HEAD COL FLOW COL	EF	0.078	
PRESS RATIO (T/	7) 1.01					
********				******		
# 02 TURBINE				02 PUMP *		
********	***					
EFFICIENCY HORSEPOWER	0.3 83 3.		EFFICIE HORSEPO	WFR	3.	
HORSEPOWER SPEED (RPM)	1747E		SPEED	(RPM)	17635.	
	7 (7		S SPEED		721.	
HEAN DIA (IN)	0.75		HEAD	(FT)	158.	
U/C TIDEALL	0.147		DIA.	(IN)	1.90	
MAY TIP SPEED	267.		TIP SPE	(IN) ED	147.	
MEAN DIA (IN) EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED STAGES	1.		VOI F	∩W	11.	
DELTA H (ACT)	25.18		HEAD CC	EF	0.537	
OHIUM			FLOW CO	EF	0.033	
PRESS RATIO (T/	T) 1 07					

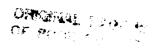


TABLE 53. — ADVANCED ENGINE PARAMETRIC STUDY FULL-EXPANDER ENGINE WITH A HYDROGEN REGENERATOR 100% OF DESIGN THRUST LEVEL

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1763.9
VAC ENGINE THRUST	20008.
DEL. VAC. ISP	480.8
TOTAL ENGINE FLON RATE	41.7
THROAT AREA	5.547
NOZZLE AREA RATIO	1000.0
ENGINE MIXTURE RATIO	6.00
CHAMBER/NOZZLE COOLANT DP	874.
CHAMBER/NOZZLE COOLANT DT	503.
ETA C#	0.995
CHAMBED (NO.77) E. O.	11788

Ch.		E UMLAN	ı Di	503.	
	A C. ■ AMBER/NOZZL	F 0		0.993 1139 0.	
Ch.	APRIDE N / HUZ Z L	.E. W		11370.	
	ENGIN	E STATIO	N CONDITIONS		

	* FUEL	SYSTEM	CONDITIONS .		
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
STATION B.P. INLET B.P. EXIT PUMP INLET	18.6	37.4	5.96	-107.5 -103.0	4.37
B.P. EXIT	100.2	38.5	5.96	-103-0	4.39
PUMP INLET	100.2	38.5	5.96	-103.0 -1	4.39
IST STAGE EXIT	1877.6	63.7	5.96	8.5	4.42
2ND STAGE EXIT	3643.0	87.7	5.96	118.3	4.47
PUMP EXIT	5403.2	110.6	5.96	226.1	4.54
COLD REGEN IN	5349.1	111.1	5.96	226.1	4.52
COLD REGEN EX	5295.6	255.4	5.96	757.5	2.73
COOLANT INLET	5295.6	255.4	5.96	757.5	2.73
COOLANT EXIT	4421.6	758.6	5.96	2668.9	0.96
TBV INLET	4377.3	758.9	0.31	2668.9	0.95
IRA EXII	2035.2	7/3.8	0.31	2668.9	0.47
LOX TRB INCE!	43/7.3	758.9	5.65	2668.9	0.95
COX INB EXIT	39/8.6	744.7	5.65	2608.7	0.89
H2 TRB INLET	39/8.6	744.7	5.65	2608.9	0.89
HE INB CALL	2162.4	657.7	5.65	2261.7	0.58
H2 IKB DIFF	2131.1	657.8	5.65	2261.7	0.57
H2 BSI IRB IN	2109.8	658.0	5.65	2261.7	0.56
HE BOT TOR DIES	2090.5	/5/ 0	5.65	2257.0	0.56
M2 851 IRB UIFF	2077.0	656.8	5.65	2257.0	0.56
02 BST TRB IN	2056.3	656.9	5.65	2257.0	0.55
02 BS1 TRB EATT	2046.9	656.2	5.65	2254.4	0.55
OF BPI IND DILL	2045.4	656.3	5.65	2254.4	0.55
THE TANK PRESS	2075 2	8/3.5	0.00/1	2275.8	J.0052
CON HEAT ENCH OF	T 2024 A	4/2.0	5.65	2273.8	0.54
YOT DECEN IN	2026.0	662.U	5.65	2274.4	0.54
TOT REGEN IN	1045.0	502.0	5.95	22/4.4	0.54
HUT KEGEN EX	1965.4	507.3	5.05	1714.0	0.67
ESA INCEI	1965.4	520.9	5.75	1763.4	J. 66
FSV EXIL	1916.2	521.1	5.95	1763.4	0.64
CHAMBER INJ	1897.1	521.2	5.95	1765.4	0.63
CHARDEN	1763.5				
STATION B.P. INLET B.P. EXIT PUMP INLET IST STAGE EXIT COLD STAGE EXIT COLD REGEM IN COLD REGEM EX COOLANT INLET TBV EXIT LOX TRB INLET LOX TRB EXIT H2 TRB INLET H2 TRB DIFF H2 BST TRB IN H2 BST TRB ENI H2 BST TRB ENI H2 BST TRB ENI H2 BST TRB IN H0 BST TRB ENI H2 TANN PRESS GOX HEAT EXCH IN GOX HEAT EXCH IN HOT REGEN IN HO	* UXVC	EN SYSTE	M COMPLETONS	-	
STATION	PRESS	TEMP	FLOW	FNTHM PV	CENSITY
B.P. INIFT	16.0	162.7	75 77	61 1	71 17
S.P. EXIT	134.9	163.3	25.77	61.5	71.20
PUMP INLET	134.9	163.3	35-77	61.5	71.20
PUMP EXIT	2852.9	176.1	25.77	70.9	71.70
02 TANK PRESS	16.0	400.0	0.06	204.8	9.12
POSV INLET	2824.3	176.2	8.55	70.9	71.05
POSV EXIT	2209.8	178.2	8.55	70.9	70.86
CCV INLET	2824.3	176.2	27.16	70.9	71.65
SCV EXIT	1936.8	179.6	27.16	70.9	70.27
PRIMARY INJ	2210.2	178.5	8.55	70.9	70.70
SECONDARY INJ	1905.3	179.7	27.16	70.9	70.22
CHAMBER	1763.8				
	VAL	WE DATA			
	444	*****			
VALVE	DELTA P	4REA	FLOH	T BYPASS	
73 V	2342.	3.014	0.31	5.17	
⊂S V	49.	1.528	5.95		
POSV	515.	7.067	8.55		
CCV	387.	3.161	FLOM 0.31 5.95 9.55 27.16		
		CTCR DATA			
• FUEL	•	• 0x1	D 4		
DELP MAN (9.9)	₽ŖI	MARY	SECOND		
DELP MAN 19.9	13 49	.57	15.71		
DELP INJ 113.2	9 -46	. 3 3	141.36		

	· FUEL ·		OXID ◀	
		PRIMARY	SECOND	
CELP MAN	; 9 . 93	49.57	15.71	
CELP INJ	113.20	446.33	141.36	
≟R EA	1.05	3.27	0.41	
FLOW	5 95	8 55	27.16	

TABLE 53. — ADVANCED ENGINE PARAMETRIC STUDY FULL-EXPANDER ENGINE WITH A HYDROGEN REGENERATOR 100% OF DESIGN THRUST LEVEL (CONTINUED)

		(0011	III(CDD)			
	********		**********	***		
	* TURBONAC	HINERY P	ERFORMANCE DAT	A =		
	********	******	********	4 # M		
********	********		****			
* H2 BOOST	TURBINE .		■ H2	BOOST PU	MP #	
********	*******			******	***	
EFFICIENCY	0.797		EFFICIE	NCY	0.766	
HORSEPOMER	38.		HORSEPO	WER	38.	
SPEED (RPM)	45998.		SPEED	(RPM)	45998.	
MEAN DIA (IN)	1.30		S SPEED		3047.	
EFF AREA (IN2)			HEAD	(FT) (IN)	2682.	
U/C (IDEAL)	0.478				2.18	
MAX TIP SPEED	260.		TIP SPE		437.	
STAGES	1.		VOL. FL		609.	
DELTA H (ACT)			HEAD CO		0.451	
GAMMA	1.35		FLOW CO	EF	0.201	
PRESS RATIO (T/)	T) 1.01					
********				*******		
# H2 TURBINE				H2 PUMP		
*******				********		
	STAGE 1					STAGE THREE
		******	**	******	*******	*********
EFFICIENCY	0.841	0.828	EFFICIENCY	0.668	0.669	0.670
HURSEPUWER	1388.	1587.	HORSEPOMER	941.	925.	909.
EFFICIENCY HORSEPOWER SPEED (RPM) MEAN DIA (IN)	129711. 1	24711.	SAFFO (KSW)	124911.	129911.	126911.
MEAN DIA (IN)	2.78	2.78	2 SPEED	922.	826.	831.
EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED DELTA H GAMMA (ACT)	0.31	0.40	DIA (TH)	280.8.	3.43	56217.
MAY TID CREED	1515	1616	TID COCED	1040	3.43 1869. 599. 0.527	3.43 1868.
DELTA H	174	177	NUM ELUM	1007.	1867. E 0 0	589.
CAMMA (ACT)	1 36	1 75	WEAT COEE	003.	0 527	0.518
PRESS RATIO(T/T	1.34	1.33	FLOW COEF	0.099	0.099	0.099
FRESS RATIONIN	1.34	1.37	TON COEF	0.077	0.077	0.077
********	******		****	******	***	
* 02 BOOST T	URBINE .			BOOST PUM		
*******				*****		
EFFICIENCY	0.863		EFFICIEN	ICY	0.764	
HORSEPOWER	20.		HORSEPON		20.	
SPEED (RPM)			SPEED		12315.	
MEAN DIA (IN)	3.68		S SPEED		2028.	
EFF AREA (IN2)	3.00		HEAD	(FT)	241.	
U/C [[DEAL]	0.514		DIA.	(IN)	2.44	
MAX TIP SPEED	198.		TIP SPEE	ם	131.	
STAGES	1.		VOL. FLO	H	226.	
DELTA H (ACT)	2.56		HEAD COE	F	0.450	
GAMMA	1.35		FLOW COE	F	0.201	
PRESS RATIO (T/T	1.00					
*********			***	******		
* OZ TURBINE	•			2 PUMP *		
*********				*******		
EFFICIENCY	0.852		EFFICIEN		0.739	
HORSEPOWER	480.		HORSEPOW		480.	
SPEED (RPM)	76933.		SPEED		76933.	
MEAN DIA (IN)			S SPEED		1813.	
EFF AREA (IN2)			HEAD Dia.	(FT)	5457.	
U/C (IDEAL)	0.496				1.92	
MAX TIP SPEED STAGES	933.		TIP SPEE		644.	
	1.		VOL. FLO		224. 0.423	
CELTA H (ACT)			HEAD COE			
PRESS RATIO (T/T	1.25 1.10		FLOW COE	F	0.154	
PRESS RATIO CIVI	1.15					
25	EGENERATOR	DATA				

	IDE HOT					
		50.61				
		54.70				
		1.46				
	. 96	5.05				
EFFECTIVENESS	0.28					
NTU	0.40					
CRATIO	0.43					
CMIN	20.47					
REGEN Q	3166.75					
	· · ·					

TABLE 54. — ADVANCED ENGINE PARAMETRIC STUDY FULL-EXPANDER ENGINE WITH A HYDROGEN REGENERATOR 50% OF DESIGN THRUST LEVEL

			E PARAMETER			
	ER PRESSU			877.5		
	NGINE THE			100 00. 47 9.8		
		LOH RATE		20.8		
THROA	T AREA			5 . 547		
	E AREA RA			100 0.0 6. 08		
	E MIXTURE Er/NO22LE	COOLANT	DP	703.		
		COOLANT		590.		
ETA C	;# Ber/Nozzle	. 0		0.9 93 652 0 -		
	ENGINE	STATION	CONDITIONS			
•	* FUEL	SYSTEM CO	MDITIONS *			
STATION		TEMP	FLOW	ENTHALPY	DENSIT 4.37	
B.P. INLET B.P. EXIT	18.6 52.5	37.4 37.9	2.98 2.98	-107.5 -105.6	4.38	
		37.9	2.98	-105.6	4.28	
1ST STAGE EXIT	52.5 896.4	51.0	2.98	-50.2	4.36	
PUMP INLET 1ST STAGE EXIT 2ND STAGE EXIT PUMP EXIT	1724.1	63.4 75.3	2.98 2.98	3.9 56.7	4.36 4.37	
PUMP EXIT COLD REGEN IN	2535.4	75.3 75.4	2.98	56.7	4.36	
COLD REGEN EX	2502.1	262 1	2.98	751.9	1.55	
COOLANT INLET	2502.1	262.1	2.98	751.9	1.55	
COOLANT EXIT	1799.1 1770.9	821.6	2.9B 0.94	2939.4 2939.4	0.30 0.37	
	1018.3	851.8 856.6	0.94	2939.4	8.22	
OV TOO THEFT	1770 9	251 2	2.04	2939.4	0.37	
LOX TRB EXIT	1628.9 1628.9 1057.4 1047.6	839.0	2.04	28 90.7 289 0.7	0.35 0.35	
H2 TRB IMLET H2 TRB EXIT	1628.9	839.0 775.5	2.04	2654.1	0.25	
H2 TRB DIFF	1047.6	775.5 775.6 775.6	2.04	2654-1	0.25	
		773.0		2654.1	0.24	
H2 BST TRB EXIT	1035.1	774.8	2.04	2651.2 2651.2	0.24 0.24	
H2 BST TRB DIFF	1030.9	774.9 774.9	2.04	2651.2	0.24	
H2 BST TRB EXIT H2 BST TRB DIFF O2 BST TRB IN O2 BST TRB EXIT C2 BST TRB DIFF	1021.8	774.9 774.5	2.04	2649.7	0.24	
02 BST TRB DIFF	1021.4	774.5	2.04	2649-7	0.24	
H2 TANK PRESS	18.6	806.6 800.3	0.0030 2.04	27 40.7 27 40. 7	0.0 844	
GOX HEAT EXCH IN		799.8	2.04	2738.7	0.23	
HOT REGEN IN		799.8	2.04	2728.7	0.23	
HOT REGEN EX	996.7	514.2	2.04	1724.9 2106.5	0.25	
FSV INLET FSV EXIT	996.7 967.6	620.3 620.4	2.98 2.98	2106.5	0.28	
CHAMBER INJ	956.8 877.4	620.5	2.98	2106.5	0.28	
CHARDER		ÆN SYSTEM	CONDITIONS	s •		
STATION	PRESS	TEMP	FLOW	ENTH ALPY 61.1	DEMS17 71.17	
B.P. INLET B.P. EXIT	16.0 64.7 64.7	162.7 163.0	17.90 17.90	61.2	71.18	
PUMP INLET	64.7	163.0 170.8	17.90	61.2	71.18	
	1571.5			66.8	71.35	
02 TANK PRESS	16.0 1564.3	400.0 170.9	0.03 6.87	204.8	0.12 71.24	
	1230.4	172.1	6.87	66.8	70.80	
	1564.3	170.9	11.30	b6.8	71.54	
OCV EXIT	905.8	173.3 172.3	11.30 5.87	66.8 66.8	70.27 70.70	
PRIMARY INJ SECONDARY INJ	900.7	173.3	11.30	56.8	70.26	
CHAMBER	877.6					
		VE DATA				
VALVE	DELTA P	REA	FLOW	Y BYPASS		
TBV	753. 39.		0.94	31.42		
FSV POSV	334.	1.367	0.87			
OC.A.	o59.		11.00			
		CTOR DATA				
◆ FUEL	PR:		SECOND			
DELP MAN 11.25		2.04	2.57			
DELP INJ -8.07		3.4.	0.41			
			11.00			

TABLE 54. — ADVANCED ENGINE PARAMETRIC STUDY FULL-EXPANDER ENGINE WITH A HYDROGEN REGENERATOR 50% OF DESIGN THRUST LEVEL (CONTINUED)

	* TURBONA	ACHINERY P	ERFORMANCE DATA	A #			

R H2 BOOST TURBINE P				BOOST PU			

EFFICIENCY HORSEPOHER	0.548	•	EFFICIEN HORSEPON	VLY JED	0.729		
HORSEPOHER SPEED (RPM)	77091		SPEED	(DDM)	8. 27083.		
MEAN DIA (IN)	1.30	1	S SPEED		2454		
FEE AREA (IN2)	2.49		HFAD	(FT)	1115.		
U/C (IDEAL)	0.478	1	HEAD DIA.	(IN)	2.18		
EFF AREA (1N2) U/C (1DEAL) MAX TIP SPEED	153.		TIP SPEE	D	257.		
STAGES	1.		VOL. FLO)W	306.		
DELTA H (ACT)	2.87		VOL. FLO HEAD COS FLOM COS	F	0.541		
GAMMA	1.45		FLOW COS	F	0.172		
PRESS RATIO (T/)	1.01						

* H2 TURBINE				H2 PUMP			
	STAGE 1	STAGE 2	SI			STAGE THREE	
			**				
EFFICIENCY HORSEPOMER SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED DELTA H GAMMA (ACT) PRESS RATIO(T/T	0.690	0.713	EFFICIENCY	0.646	0.649	0.652	
HORSEPOWER	363.	321.	HORSEPOWER	233.	228.	222.	
SPEED (RPM)	81622.	81622.	SPEED (RPM)	81622.	81622.	81622.	
MEAN DIA (IN)	2.78	2.78	S SPEED	663.	673.	683.	
EFF AREA (IN2)	0.31	0.40	HEAD (FT)	27819.	27316.	26753.	
U/C (IDEAL)	0.328	0.354	DIA. (IN)	3.43	3.43	3.43	
MAX TIP SPEED	990.	990.	TIP SPEED	1221.	1221.	1221.	
DELTA H	125.	111.	VOL. FLOW	307.	307.	306.	
DOESS DATIONT	1.45	1.45	HEAD CUEF	0.600	0.589	0.578	
PRESS MALIDELY	1.54	1.37	FLUM COEF	0.076	0.078	0.079	
********	*******		****	*****	***		
• OR ROOST T	IDDINE .		* 02	BOOST PUR	1P *		
******	******			******			
EFFICIENCY HORSEPOWER	0.701		EFFICIEN HORSEPOW	CY	0.729		
HORSEPOWER	4.		HORSEPOW	ER	4.		
HORSEPOHER SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED	7188.		SPEED	(RPM)	118 8. 2942.		
MEAN DIA (IN)	3.68		S SPEED		2.42.		
EFF AREA CINET	3.60		HEAD DIA.	(11)	2.44		
MAX TIP SPEED	115.		TIP SPEE	י וווי	77.		
STAGES	1.		VOI FLO	u	117		
DELTA H (ACT)	1.52		HEAD COE	F	0.542		
DARIMA	1.43		HEAD COE FLOW COE	F	2.172		
PRESS RATIO (T/T	1.00						
*********				******			
* 02 TURBINE				2 PUMP 4			
************	0.704			*******	2 202		
HORSEPOWER	161		EFFICIEN HORSEPOW	F D	141		
EFFICIENCY HORSEPOWER SPEED (RPM)	53400.		SPEED	(RPM)	53400.		
MEAN DIA (IN)	2.78		C COEED		170/		
MEAN DIA (IN) FFF AREA (IN2) J/C (IDEAL)	0.43		S SPEED SEAD SEA.	(FT)	3041.		
JZC (IDEAL)	0.348		DIA.	(IN)	1.92		
AK III SICES	54 8. 1.		TIP SPEE	ט	447.		
STAGES	1 -		VCL. FLO	4	113.		
DELTA H (ACT)	48.72		HEAD COEF	-	3.490		
- BAMMA - PRESS RATIO (T/T	; . 45		FEOM COE	•	3.112		
- ME22 KALLO (1-1	, 1.37						
21	EGENERATOR	BATA					
,							
COLD S		OT SIDE					
	. 24	18.84					
		285.59					
	. 41	1.46					
FLOW 3	. 98 0 . 3 9	2.04					
NTU	0.62						
SRATIO	3.65						
SMIN	7.26						
REGEN Q	2072.05						

TABLE 55. — ADVANCED ENGINE PARAMETRIC STUDY FULL-EXPANDER ENGINE WITH A HYDROGEN REGENERATOR 10% OF DESIGN THRUST LEVEL

			E PARAMETER			
CHAMI	BER PRESSI	URE		173.1		
VAC I	ENGINE TH	RUST		2000.		
	VAC. ISP	FLOH RATE		479. 0 4.2		
	T AREA	LOW KAIL		5.547		
	E AREA R			1000.		
	Æ MIXTURI		no.	6.86		
		E COOLANT		142. 841.		
ETA (_ 000027411		0.993		
CHAMI	BER/NOZZLI	E Q		1800.		
			CONDITIONS	49.5		
	* FUEL	SYSTEM CO	NDITIONS .			
STATION		TEMP	FLOH	ENTHALPY	DENSITY	
B.P. INLET B.P. EXIT	18.6 22.7	37.4	0.60	-107.5 -107.2	4.37 4.37	
PUMP INLET	22.7	37.4 37.4	0.60 3.60	-107.2	4.37	
IST STAGE EXIT	162.8	41.1	0.60	- 95 . 8	4.32	
2ND STAGE EXIT	299.4	44.2	0.60	-83.1	4.27 4.23	
PUMP EXIT COLD REGEN IN	432.3	47.3 47.3		-71.6 -71.6	4.23	
COLD REGEN EX	428.9	47.3 276.7	0.60 0.60	816.4	0.29	
COOLANT IMPET	478.9	276.	0.60	816.4	0.29	
COOLANT EXIT	286.9	1118.1 1118.2 1118.7 1118.2 1112.0	0.60 0.37	3831.7 3831.7	0.05 0.05	
TBV INLET TBV EXIT	207.8	1118.7	0.37	3831.7	0.03	
LOX TRB INLET	277.9	1118.2	0.23	3831.7 3809.7	0.05	
LOX TRB EXIT	263.3	1112.0	0.23		0.04	
H2 TRB INLET	263.3	1112.0 1085 R	0.23 0.23	38 29. 7 371 7. 4	0.04 0.04	
H2 TRB EXIT H2 TRB DIFF H2 BST TRB IN H2 BST TRB EXIT H2 BST TRB DIFF	210.3	1085.8	0.23	3717.4	0.04	
H2 BST TRB IN	209.7	1085.8	0.23	3717.4	0.04	
H2 BST TRB EXIT	209.2	1085.6	0.23	3717.4 3716.5 3716.5	0.04 0.04	
HZ BST TRB DIFF	208.3	1085.6	0.23	3716.5	0.04	
02 BST TRB IN 02 BST TRB EXIT 02 BST TRB DIFF H2 TANK PRESS GOX HEAT EXCH IN	208.1	1085.5	0.23	3716.1	0.04	
02 BST TRB DIFF	208.0	1085.5	0.23	3716.1	0.04	
H2 TANK PRESS	18.6	1107.3	0.0004	3787.1 3787.1	0.0032	
GOX HEAT EXCH OUT	207.5	1104.8	0.23	3783.3	0.04	
HOT REGEN IN	207.5		0.23	3783.3	0.04	
	205.9	449.8	0.23	14 82. 7 2925.1	0.09 0.04	
FSV INLET FSV EXIT	198.1	857.8 857.9	0.60	2925.1	0.04	
	195.2	857.9	0.60	2925.1	0.04	
CHAMBER	173.1					
CTATION			CONDITIONS	ENTHALPY	DENSITY	
5 5 114 ET	17.0	1.27	7 6 9	61.1	71.17	
B.P. EXIT	21.6	162.7	3.59	61.1	71.17	
PUMP INLET	21.6	162.7	5.59	61.1	71.17	
PUMP EXIT 02 TANK PRESS	16.0	162.7 162.7 162.7 165.1 400.0	3.59 9.01	62.5 204.8	71.03 0.12	
POSV INLET	293.3	165.1	2.87	62.5	71.03	
POSV EXIT	234.6	105.4	2.87	62.5	70.93	
OCV INLET	293.3	165.1 165.6	0.70 0.70	62.5 62.5	71.03 70.83	
PRIMARY INJ	173.2	105.4	2.87	62.5	70.92	
SECONDARY INJ	173.2	105.0	0.70	42.5	70.83	
CHAMBER	173.1					
		VE DATA				
VAL VE	DELTA P		FLOW	S BYPASS		
TBV		3.3.5	2.27	61.41		
FSV		5.8	o 0			
POSV CEV	.20.	0.0 07 0.011	37 3.7 0			
		ECTOR DATA				
• FUEL		IXU - UXI: Vram)	D 4 SECOND			
DELP MAN 2.98		.54	3.01			
DELP INJ 19.10	: 50	1.52	3.09			
AREA I.05		3.07	0.41			
FLOM 0.60	, .	.37	0.70			

TABLE 55. — ADVANCED ENGINE PARAMETRIC STUDY FULL-EXPANDER ENGINE WITH A HYDROGEN REGENERATOR 10% OF DESIGN THRUST LEVEL (CONTINUED)

	. TURBONACHINER	Y PERFORMANCE DA	TA #			

*********			国际国际基本系统法系统资本系统			
# H2 BOOST 1			2 BOOST PU			
*********			*******			
EFF ICIENCY	0.301		ENCY			
HORSEPONER	. •	HORSEP		0.		
SPEED (RPM)	8140.		(RPM)	8140.		
MEAN DIA (IN)			D	1632.		
EFF AREA (IN2)			(FT)	133.		
U/C (IDEAL)		DIA.	(IN)	2.18		
MAX TIP SPEED	46.	LIE ZEI	EED	77.		
STAGES	1.	VOL. FI	LOM	61.		
DELTA H (ACT)		HEAD C	DEF	0.712		
GAMMA	1.40	FLOW C	JEF	0.115		
PRESS RATIO (T/1	7) 1.61					
				_		
**********			H2 PUMP			
# H2 TURBINE						
*********			*********		STAGE THREE	
	STAGE 1 STAGE				HARRESTERNA	
	******		0 /00	0 /06	0.582	
EFFICIENCY HORSEPONER	0.3/1 0.41	7 EFFICIENCY . HORSEPOWER . SPEED (RPM)	U.489	U.475	1.592	
MINSENDER CORE	10. 14	. MURSEYUMER	72027	10.	10. 22022	
SPEED (RPM)	32027. 32027	. SPEED (KPM)	32027.	32021. /EE	32 0 27.	
REAN DIA (IN)	2.78 2.7	o bear (cr.	448.	433. (EGA	4498.	
EFF AREA (INZ)	0.4	U MCAU (FT)	4653.	4580.	4478. 3.43	
U/L (IUEAL)	700 ***	DIM. (IN)	2.43	3.43 /20	479.	
MAX TIP SPEED	700. 788	SPEED (RPH) S SPEED HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOW HEAD COEF FLOW COEF	4/7.	417. 42	417.	
CAMMA (ACT)	140 14	A HEAD COEF	0 652	63. 0.642 0.040	0.631	
DECC DATIONATION	1.40 1.4	7 FINH COEF	0.032	0.040	0.062	
PRESS RATIONT	1.54 1.5	/ I LON COLI	0.007	0.012		

* 02 BOOST T			BOOST PU			
********			*****			
EFFICIENCY	0.322	EFF1C16	NCY	0.536		
HORSEPONER		HORSEPO		0.		
SPEED (RPM)	2117.		(RPM)	2117.		
MEAN DIA (IN)	3.68	S SPEED)	1633.		
FEE ADEA (INC)	3.60		(FT)	11.		
U/C (IDEAL) MAX TIP SPEED	0.514		(IN)	2.44		
MAX TIP SPEED	34.	TIP SPE		23.		
STAGES	1.	VOL. FL	_OM	23.		
DELTA H (ACT)	0.42	HEAD CO	DEF	0.717		
GAMMA	1.40	FLOW CO		0.117		
PRESS RATIO (T/T	1.00					
*********			******			
■ 02 TURBINE	•		02 PUMP #			
********			******			
EFFICIENCY	0.371		NCY			
HORSEPOWER	7.	HORSEPO	WER	7.		
SPEED (RPM) MEAN DIA (IN)	21785.	SPEED	(RPM)	21785.		
MEAN DIA (IN)	2.78	S SPEEL)	911.		
EFF AREA (IN2)	0.43	HEAD	(FT) (IN)	552.		
U/C (IDEAL)	0.153			1.92		
MAX TIP SPEED	264.	TIP SPE		182.		
STAGES	1.	VOL. FL		23.		
DELTA H (ACT)	21.98	HEAD CO		0.534		
GAMMA	1.40	FLOW CO	DEF	0.055		
PRESS RATIO (T/T	1.06					
	EGENERATOR DATA					

COLD S						
	.82 1.6					
	.44 -654.9					
	.41 1.4					
	.60 0.2	,				
EFFECTIVENESS	0.62					
NTU	1.18					
CRATIO	0.35					
CMIN	0.81					
REGEN Q	530.04					

TABLE 56. — ADVANCED ENGINE PARAMETRIC STUDY FULL-EXPANDER ENGINE WITH A HYDROGEN REGENERATOR 5% OF DESIGN THRUST LEVEL

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	86.0
VAC ENGINE THRUST	1000.
DEL. VAC. ISP	478.5
TOTAL ENGINE FLON RATE	2.1
THROAT AREA	5.547
NOZZLE AREA RATIO	1006.6
ENGINE MIXTURE RATIO	6.00
CHAMBER/NOZZLE COOLANT DP	53.
CHAMBER/NOZZLE COOLANT DT	929.
ETA C.	0.993
CHAMBER/NOZZLE Q	996.

	DER TOUR				
	ENGINE	STATION	CONDITIONS		

			* SHOITIGHS		
STATION	PRESS	TEHP	FLOH	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	0.30	-107.5	4.37
B.P. EXIT	20.1	37.4	0.30	-107.4	4.37
PUMP INLET	20.1	37.4	0.30	-107.4	4.37
IST STAGE EXIT	78.0	39.4	0.30	-161.5	4.34
2ND STAGE EXIT	134.6	41.0	0.30	-95.8	4.30
PUMP EXIT	189.8	42.6	0.30	-90.2	4.27
COLD REGEN IN	189.6	42.6	0.30	-98.2	4.27
COLD REGEN EX	188.2	276.7	0.30	818.8	0.13
COOLANT INLET	188.2	276.7	0.30	818.8	0.13
COOLANT EXIT	135.2	1205.5	0.30	4132.8	0.02
THY INLET	130.1	1205.6	0.21	4132.8	0.02
THE EXIT	104.7	1205.8	0.21	4132.8	0.02
LOX TRB INLET	130.1	1205.6	0.09	4132.8	0.02
LOX TRB EXIT	124.6	1201.7	0.09	4119.1	0.02
HZ TRB INLET	124.6	1201.7	0.09	4119.1	0.02
H2 TRB EXIT	106.0	1186.1	0.09	4864.1	0.02
HZ TRB DIFF	105.7	1186.1	0.09	4864.1	0.02
HZ BST TRB IN	105.5	1186.l	0.09	4064.1	0.02
H2 BST TRB EXIT	105.3	1186.0	0.09	4063.6	0.02
H2 BST TRB DIFF	105.1	1186.0	0.09	4063.6	0.02
OZ BST TRB IN	104.9	1186.0	0.10	4063.6	0.02
OZ BST TRB EXIT	104.8	1185.9	0.10	4063.4	0.02
OZ BST TRB DIFF	104.8	1185.9	0.10	4063.4	0.02
HZ TANK PRESS	18.6	1200.2	0.0002	4111.2	0.0029
GOX HEAT EXCH IN	104.7	1199.6	0.09	4111.2	0.02
GOX HEAT EXCH OUT	104.7	1198.3	0.09	4186.5	0.02
HOT REGEN IN	104.7	1198.3	0.09	4104.5	0.02
HOT REGEN EX	104.1	371.8	0.09	1190.0	0.05
FSV INLET	104.1	942 3	0.30	3215.6	0.02
FSV EXIT	99.B	943	0.30	3215.6	0.02
CHAMBER INJ	98.2	942	0.30	3215.6	0.02
CHAMBER	16.0				
*					
	* OXY	SEN SYSTEM	CONDITIONS	5 .	
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
3.P. INLET	16.0	162.7	1.79	61.1	71.17
B.P. EXIT	17.0	162.7	1.79	61.1	71.17
PUMP INLET	17.0	162.7	1.79	61.1	71.17
PUMP EXIT	132.4	164.0	1.79	61.8	71.07
02 TANK PRESS	16.0	400.0	0.00	294.8	0.12
POSV INLET	132.3	164.0	1.78	61.8	71.07
POSV EXIT	109.8	164.1	1.78	61.8	71.03
OCV INLET	132.3	164.0	0.01	61.8	71.07
OCV EXIT	86.0	164.2	0.01	61.8	70.99
PRIMARY INJ	105.5	164.1	1.78	61.8	71.02
SECONDARY INJ	86.0	164.2	0.01	61.8	70.99
CHAMBER	86.2				
		VE DATA			

VAL.VE	DELTA P	AREA	FLOW	% BYPASS	
TBV	25.	3.484	0.21	68.83	
FSV	4.	1.528	0.30		
POSV	23.	0.067	1.78		
OCY	46.	0.000	0.01		
	INJ	CTOR DATA			

+ OXID +
PRIMARY SECOND
2.15 0.00
19.31 0.00
3.37 0.41
1.78 0.01

* FUEL *

10.62

0.30

DELP MAN

AREA FLOM

TABLE 56. — ADVANCED ENGINE PARAMETRIC STUDY FULL-EXPANDER ENGINE WITH A HYDROGEN REGENERATOR 5% OF DESIGN THRUST LEVEL (CONTINUED)

	- TURBON	ACHINERY P	ERFORMANCE DATA	A =		

# H2 BOOST TURBINE #			# H2 BOOST PUMP #			

EFFICIENCY	0.20	,	EFFICIE)	MCY MED	0.468	
HOR SEPOHER SPEED (RPH)	8. 4798.	•	HORSEPOI SPEED	(DOM)	0. 4798.	
MEAN DIA (IN)			S SPEED		1426.	
FEE ADEA (1M2)	2 41		HEAD	(FT)	49.	
U/C (IDEAL)	0.476		HEAD DIA.	(IN)	2.18	
MAX TIP SPEED	27.		TIP SPEE	D	46.	
STAGES	1.		VOL. FLO		31.	
DELTA H (ACT)					0.765	
GAHHA	1.37	,	HEAD COE FLOH COE	F	0.097	
PRESS RATIO (T/1	r) 1.01					
*********				******		
■ H2 TURBINE				H2 PUMP		
*******	***		**			
	STAGE I	STAGE 2	51			STAGE THREE
CECTATENAN	A 277	0.716	ESSICIENCY	0.619	0.628	0.430
HUDSEDUMED	4.273	7	HORSEPOWER	2.	2.	2.
EFFICIENCY HORSEPONER SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED DELTA H GAMMA (ACT) PRESS RATIO(T/T	20529.	20529.	SPEED (RPM)	20529	20529	20529.
MEAN DIA (IN)	2.78	2.78	S SPEED	394	400.	407.
EFF AREA (IN2)	8.31	0.40	HEAD (FT)	1915.	1886.	1855.
U/C (IDEAL)	0.106	0.125	DIA. (IN)	3.43	3.43	3.43
MAX TIP SPEED	249.	249.	TIP SPEED	307.	307.	307.
DELTA H	30.	25.	VOL. FLOW	31.	31.	31.
GAMMA (ACT)	1.37	1.37	HEAD COEF	0.653	0.644	0.633
PRESS RATIO(T/T	1.34	1.37	FLOW COEF	0.031	0.031	0.032
*********				*********		
# 02 BOOST T				BOOST PUR		
EFFICIENCY HORSEPONER	U.136 8.		EFFICIEN HORSEPON	FR	0.601	
SPEED (RPM)	934.		SPEED	(RPM)	0. 934. 1836.	
MEAN DIA (IN)			S SPEED		1836.	
CEC 4054 (1N2)	7 46				2.	
U/C (IDEAL)	0.514		HEAD DIA.	(IN)	2.44	
MAX TIP SPEED			TIP SPEE	Ď	10.	
STAGES	ı.		VOL. FLO	H	11.	
DELTA H (ACT)	0.19		HEAD COE FLOW COE	F	0.667	
G AMMA	1.3/		FLOW COE	F	0.133	
PRESS RATIO (T/T	1.00					

# 02 TURBINE				2 PUMP ×		
***********				*****		
EFFICIENCY	0.271		EFFICIEN	CY	0.423	
HORSEPOWER	2-		EFFICIEN HORSEPOW	ER	2.	
EFFICIENCY HORSEPOWER SPEED (RPM)	14146.		SPEED	(RPM)	14146.	
MEAN DIA (IN)	2.78		S SPEED		796.	
EFF AREA (1N2)	0.43		HEAD DIA.	(FT)	234.	
U/C (IDEAL) MAX TIP SPEED	0.108				1.92	
MAX TIP SPEED	172.		TIP SPEE		118.	
STAGES DELTA H (ACT)	1.		VOL. FLO		11. 0.537	
GAMMA (ACT)	13.07		FLOW COE		0.042	
PRESS RATIO (T/T			/ LON COL	•	0.042	
TRESS NATIO (17)	,					
	EGENERATO					

		OT SIDE				
	. 45	0.56				
		-826.44 1.46				
	.41 .30	0.09				
EFFECTIVENESS	. 30					
NTU	1.54					
CRATIO	0.28					
CMIN	0.33					
REGEN Q	271.50					

APPENDIX D OFF-DESIGN MIXTURE RATIO CYCLES

Off-design mixture ratio cycle data are presented in Tables 57 through 68.

PRECEDING PAGE BLANK NOT FILMED

TABLE 57. — SPLIT-EXPANDER CYCLE — O/F = 5.0

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1370.7
VAC ENGINE THRUST	16476.
DEL. VAC. ISP	477.1
TOTAL ENGINE FLOW RATE	34.5
THROAT AREA	6.071
NOZZLE AREA RATIO	1999.0
ENGINE MIXTURE RATIO	5.00
CHAMBER/NOZZLE COOLANT DP	467.
CHAMBER/NOZZLE COOLANT DT	790.
ETA C#	0.793
CHAMBER /NO.27LE D	8504

ENGINE STATION COMDITIONS

	****	*******	**********		
	* FUEL	SYSTEM CO	MOITIONS .		
MOITATE	PRESS	TEMP	FLON	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	5.76	-107.5	4.37
B.P. EXIT	93.0			-103.4	4.39
PUMP INLET	93.0		5.76	-103.4	4.39
IST STAGE EXIT			5.76	17.5	4.36
JBV INLET	1878.8	66.9		17.5	4.33
JBV EXIT	1547.9	69.4		17.5	4.09
2ND STAGE EXIT	3070.1			96.6	4.34
PUMP EXIT	4185.3	102.2	2.88	172.8	4.35
COOLANT INLET	4140.5	102.6	2.88	172.8	4.33
COOLANT EXIT	3673.7	892.5	2.88	3126.5	0.70
TBV INLET	3639.2	892.7	0.03	3126.5	0.70
TBV EXIT	1618.4	906.1	0.03	3126.5	0.32
LOX TRB INLET	3639.2	892.7	2.85	3126.5	0.70
LOX TRB EXIT	3204.7	869.9	2.85	3036.0	0.63
H2 TRB INLET					
H2 TRB EXIT					
H2 TRB DIFF	1701.8	766.2			0.40
HZ BST TRB IN	1683.2	766.3	2.85	2634.8	0.39
H2 BST TRB EXIT	1662.0	764.1	2.85		0.39
H2 BST TRB EXIT H2 BST TRB DIFF	1657.4	764.1	2.85	2626.5	0.39
OZ BST TRB IN	1639.2	764.2	2.85	2626.5	0.38
OZ BST TRB EXIT				2622.1	0.38
O2 BST TRB DIFF				2622.1	0.38
H2 TANK PRESS	18.6	774.2	8.0060	2627.1	
GUX HEAT EXCH IN	1618.4	764.5	2.85	2627.1	0.38
GOX HEAT EXCH DUT	1610.4	763.9	2.85	2624.8	0.38
MIXER HOT IN	1610.4	763.9	2.85	2624.8	0.38
MIXER COLD IN				17.5	
MIXER OUT	1530.8	402.0	5.76	1314.6	0.67
FSV INLET					
				1314.6	0.65
CHAMBER INJ	1476.7	402.1	5.76	1314.6	0.64
CHAMBER	1371.1				

	* OXY	GEN SYSTEM	CONDITION	S =	
STATION	PRESS	TEMP	FLON	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	28.83	61.9	70.99
B.P. EXIT	138.7	165.4	28.63	62.4	70.83
PUMP INLET	138.7	165.4	28.83	62.4	70.83
PUMP EXIT	2647.8	177.8	28.83	71.3	71.24
02 TANK PRESS	16.0	400.0	9.05	204.7	0.12
POSV INLET	2630.8	177.8	6.09	71.3	71.22
POSV EXIT	1627.3	181.7	6.09	71.3	69.63
OCV INLET	2630.8	177.8	22.68	71.3	71.22
OCV EXIT	1481.8	182.3	22.68	71.3	69.40
PRIMARY INJ	1580.4	181.9	6.09	71.3	69.56
SECONDARY INJ	1461.5	182.4	22.68	71.3	69.36
CHAMBER	1370.6				

	VAL	VE DATA		
	***	*****		
VALVE	DELTA P	AREA	FLON	* BYPASS
JBV	348.	0.114	2.88	50.00
TBV	2021.	0.002	0.03	1.00
FSV	39.	1.654	5.76	
POSV	1004.	0.034	6.09	
ocv	1149.	0.119	22.68	

INJECTOR BATA *********

		• FUEL •	* dixo *			
			PRIMARY	SECONS		
DELP	MAN	15.76	23.31	10.09		
DELP	INJ	90.19	209.80	90.77		
ARÉA		1.14	0.08	0.43		
FLOW		5.76	6.09	22.68		

TABLE 57. — SPLIT-EXPANDER CYCLE — O/F = 5.0 (CONTINUED)

			ERFORMANCE DATA			

*******				******	***	
■ H2 BOOST 1	TURBINE #		* H2	BOOST PU	MP #	
********			***	******	***	
EFFICIENCY HORSEPOHER	0.867		EFF I CIE	NCY	0.765	
HORSEPOHER	33.		HORSEPO	WER	33.	
SPEED (RPM)	44201.		SPEED		44201.	
MEAN DIA (IN)	1.90		S SPEED		2088.	
EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED	1.45		HEAD DIA.	(FT)	2443.	
U/C (IDEAL)	0.512		DIA.	(IN)	2.18	
MAX TIP SPEED	366.		HP SPE	E D	420.	
STAGES	1.		VOL. FLO	DW 	589.	
DELTA H (ACT)	8.29		HEAD COL FLOW COL	EF ce	0.445 0.203	
GAMMA	1.41		FLUM CO	EF	0.203	
PRESS RATIO (T/1	1.01					

				H2 PUMP		
W M2 TURBINE						
**********	STAGE 1	STAGE 2	ć.	TAGE ONF	STAGE TWO	STAGE THREE
	SIMOL I	*****		******	*******	*****
FEETCIENCY	0.818	0.816	EFF ICIENCY	0.640	0.619	0.624
HORSEPOHER	1614.	1619.	HORSEPOWER	986.	323.	310.
SPEED (PPM)	118310.	18310.	SPEED (RPM)	118310.	118310.	118310.
MEAN DIA (IN)	3.47	3.47	S SPEED	750.	749.	765.
FFF AREA (IN2)	0.21	0.27	HEAD (FT)	60268.	38125.	36980.
U/C (IDEAL)	0.515	0.506	DIA. (IN)	3.68	3.02	3.02
MAX TIP SPEED	1792.	1792.	TIP SPEED	1904.	1558.	1558.
DELTA H	197.	204.	VOL. FLOH	594.	298.	297.
GAMMA (ACT)	1.41	1.41	HEAD COEF	0.535	0.505	0.490
EFFICIENCY HORSEPOHER PERM (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED DELTA H GAMMA (ACT) PRESS RATIO(T/T	1.33	1.35	FLOW COEF	0.094	0.094	0.095
*******	*****			******		
* 02 BOOST 1	TURBINE *		* 02	BOOST PU	MP #	
********				******		
EFFICIENCY HORSEPOWER	0.860		EFF ICIE	NCY WER	0.732	
HORSEPOHER	18.		HORSEPO	NCY WER (RPM)	18.	
SPEED (RPM)	11472.		SPEED	(RPM)	11472.	
MEAN DIA (IN)	5.21		S SPEED HEAD DIA.		2470.	
EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED	2.02		HEAD	(F1)	250. 2.44	
U/C (IDEAL)	0.512		TIP SPE	(IN)	122.	
MAX TIP SPEED	261.		VOL. FL	LD	183.	
STAGES	1. 4.43		WEAD CO	EE.	0.537	
DELTA H (ACT)	1.41		HEAD CO	FF	0.173	
PRESS RATIO (T/)			TEGA CO.	_,	****	
*********	* # 12		ин	*******		
# 02 TURBINE		# OZ PUMP #				
********				******		
EFFICIENCY HORSEPOWER	0.824		EFFICIE	NCY		
HORSEPOHER	365.		HORSEPO	WER	365.	
HORSEPOHER SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2)	70756.		SPEED	WER (RPM)	70756.	
MEAN DIA (IN)	3.47		S SPEED		1587.	
			HEAD	(FT) (IN)	5070.	
U/C (IDEAL)						
MAX TIP SPEED STAGES	1072.		TIP SPE		592. 182.	
STAGES			VOL. FL HEAD CO	UM EE	0.465	
DELTA H (ACT)	90.48		FLOW CO	E E		
DELTA H (ACT) GAMMA PRESS RATIO (T/)	1.41		HEAD CO FLOW CO	EF	0.131	

TABLE 58. — SPLIT-EXPANDER CYCLE — O/F = 5.5

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1522.7
VAC ENGINE THRUST	18600.
DEL. VAC. ISP	479.0
TOTAL ENGINE FLON RATE	8.82
THROAT AREA	6.071
NOZZLE AREA RATIO	1000.0
FNGINE MIXTURE RATIO	5.50
CHAMBER/NOZZLE COOLANT DP	525.
CHAMBER/NOZZLE COOLANT DT	886.
ETA C*	0.993
CHAMBER/NOZZLE Q	9849.

ENGINE STATION CONDITIONS

•	•																							*	*	
		F	υ	E	L	S	٧	S	ī	Ł	М	ı	С	0	N	D	I	T	I	0	N	S	Ħ			

	4 FUEL	SAZIEM COL	INTITUMS .		
STATION .	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	5.98	-107.5	4.37
B.P. EXIT	100.2	38.5	5.98	-103.0	4.39
PUMP INLET	100.2	38.5	5.98	-103.0	4.39
IST STAGE EXIT	2104.4	69.3	5.98	29.5	4.36
JBV INLET	2060.5	69.7	2.99	29.5	4.33
JBV EXIT	1712.9	72.3	2.99	29.5	4.09
2ND STAGE EXIT	3368.4	89.3	2.99	116.3	4.34
PUMP EXIT	4596.1	108.2	2.99	199.9	4.36
COOLANT INLET	4548.1	108.6	2.99	199.9	4.34
COOLANT EXIT	4023.2	995.0	2.99	3494.2	0.69
TBV INLET	3985.3	995.3	0.03	3494.2	0.69
TBV EXIT	1789.7	1010.5	0.03	3494.2	0.32
LOX TRB INLET	3985.3	995.3	2.96	3494.2	0.69
LOX TRB EXIT	3510.0	970.0	2.96	3394.2	0.63
HZ TRB INLET	3510.0	970.0	2.96	3394.2	0.63
H2 TRB EXIT	1902.0	855.2	2.96	2954.4	0.40
H2 TRB DIFF	1880.4	855.4	2.96	2954.4	0.39
H2 BST TRB IN	1860.2	855.5	2.96	2954.4	0.39
H2 BST TRB EXIT	1837.1	853.1	2.96	2945.3	0.38
H2 BST TRB DIFF	1832.1	853.1	2.96	2945.3	0.38
GZ BST TRB IN	1812.4	853.2	2.96	2945.3	0.38
02 BST TRB EXIT	1800.2	851.9	2.96	2940.4	0.38
02 BST TRB DIFF	1799.4	851.9	2.96	2940.4	0.38
H2 TANK PRESS	18.6	865.0	0.0056	2946.0	0.0041
GOX HEAT EXCH IN	1789.7	853.6	2.96	2946.0	0.38
GOX HEAT EXCH OUT		852.9	2.96	2943.5	0.37
MIXER HOT IN	1781.0	852.9	2.96	2943.5	0.37
MIXER COLD IN	1712.9	72.3	2.99	29.5	4.09
MIXER OUT	1694.5	444.7	5.97	1479.2	0.66
FSV INLET	1694.5	444.7	5.97	1479.2	0.66
FSV EXIT	1652.6	444.8	5.97	1479.2	0.65
CHAMBER INJ	1636.2	444.9	5.97	1479.2	0.64
CHAMBER INS	1522.7				
CHIDER					

	* OXY	GEN SYSTEM	CONDITIONS	\$ *	
MOITATE	PRESS	TEMP	FLOW	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	32.91	61.9	70.99
B.P. EXIT	143.0	165.3	32.91	62.4	70.84
PUMP INLET	143.0	165.3	32.91	62.4	70.84
PUMP EXIT	2698.8	177.7	32.91	71.4	71.31
02 TANK PRESS	16.0	400.0	0.06	204.7	0.12
POSV INLET	2676.7	177.8	5.84	71.4	71.27
POSV EXIT	1757.3	181.3	5.84	71.4	69.83
	2676.7	177.8	27.02	71.4	71.27
OCV INLET	1679.6	181.6	27.02	71.4	69.70
OCV EXIT	1714.5	181.5	5.84	71.4	69.76
PRIMARY IHJ SECONDARY IHJ	1651.0	181.7	27.02	71.4	69.66
CHAMBER	1522.7				

٧	Α	L	٧	E	υ	A	Į	A	
						*	*		

	***	*****		
VALVE	DELTA P	AREA	FLOH	% BYPASS
JBV	366.	0.115	2.99	50.00
TBV	2196.	0.002	0.03	1.00
FSV	42.	1.654	5.97	
POSV	919.	0.034	5.84	
ocv	997.	0.152	27.02	

		INJECTOR DA	TA

	* FUEL *	* (XID *
		PRIMARY	SECOND
DELP HAN	17.03	21.31	14.25
DELP INJ	96.49	191.80	128.26
AREA	1.14	0.08	0.43
FLON	5.97	5.84	27.02

TABLE 58. — SPLIT-EXPANDER CYCLE — O/F = 5.5 (CONTINUED)

	* TURBOMACHINERY	NANNENGERNAREN PERFORMANCE DATA N NANNENGERNAREN	
*********		******	
* H2 BOOST 1		* H2 BOOST F	PUMP *

EFFICIENCY HORSEPOWER SPEED (RPM) MEAN DIA (IN)	0.865	EFFICIENCY	0.765
HODSEDOMER	38.	HORSEPOHER SPEED (RPM) S SPEED	38.
CDEED (PPM)	46114	SPEED (RPM)	46114.
MEAN DIA (IN)	1.90	S SPEED	3062.
FEE ADEA (IN2)	1.45	15T1	2479
EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED	0.512	DIA. (IN)	2.18
MAX TIP SPEED	382.	TIP SPEED	438.
STAGES	1.	VOL. FLOH	611.
DELTA H (ACT)	9.09	HEAD COEF	611. 0.449
GAMMA	1.43	HEAD COEF FLON COEF	0.202
PRESS RATIO (T/)			
	•		
*******	***		
# H2 TURBINE		# H2 PUH	> *
********		电子性性性性	
		STAGE ON	STAGE THO STAGE THREE
	*****	有效效性效果	计 计优先计划分别符 化非有效化化非异异烷
EFF ICIENCY	0.816 0.816	EFFICIENCY 0.64	0.620 0.625
HORSEPOHER	1842. 1842.	HORSEPOHER 112	1. 367. 354.
SPEED (RPM)	123580. 123580.	SPEED (RPM) 12358	o. 123580. 123580.
MEAN DIA (IN)	3.47 3.47	S SPEED 74	4. 742. 758.
FFF AREA (IN2)	0.21 0.27	HEAD (FT) 6609	5, 41839. 40624.
U/C (IDEAL)	0.512 0.507	DIA. (IN) 3.	68 3.02 3.02
MAX TIP SPEED	1872. 1872.	TIP SPEED 198	B. 1628. 1628.
DELTA H	218. 222.	VOL. FLOW 61	6. 309. 308.
GAMMA (ACT)	1.43 1.43	HEAD COEF 0.5	38 0.508 0.493
PRESS RATIO(T/T	1.33 1.35	FLOW COEF 0.0	E STAGE TWO STAGE THREE 1 0.620 0.625 1. 367. 354. 0.123580. 123580. 4. 762. 758. 5. 41839. 40624. 88 3.02 3.02 8. 1628. 1628. 6. 309. 308. 38 0.508 0.493 94 0.093 0.095

********		• 02 BOOST	
# 02 BOOST		# UZ BOUST	
********	******		0.757
EFFICIENCY HORSEPOWER	0.863	ELLICIENCE	20
HORSEPOWER SPEED (RPM)	20.	HORSEPOHER SPEED (RPM)	12162
SPEED (RPM)	12162.	S SPEED (KEN)	2726.
MEAN DIA (IN)	5.21	5 SPEED (ET)	258.
EFF AREA (IN2)	2.02	NEAD (TI)	2.44
MEAN DIA (IN) EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED	0.512	HEAD (FT) DIA. (IN) TIP SPEED	130.
MAX TIP SPEED	277.		200
2 I AGE 2	1.	HEAD COSE	0.494
DELTA H (ACT)	4.88	HEAD COEF FLOW COEF	0.187
GAMMA PRESS RATIO (T/		TEOR COC.	
PRESS RATIO (17	1) 1.01		
*******	***	*****	**
* O2 TURBIN		■ 02 PUMP	*

EFF1C1ENCY	0.818	EFFICIENCY	
HORSEPOHER	419.	HORSEPOHER	419.
EFFICIENCY HORSEPOWER SPEED (RPM) MEAN DIA (IN)	73101.	SPEED (RPM) S SPEED	73101.
MEAN DIA (IN)	3.47	S SPEED	1728.
EFF AREA (IN2)	0.25	HEAD (FT) DIA. (IN)	5159.
EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED STAGES DELTA H (ACT)	0.447	DIA. (IN)	1.92
MAX TIP SPEED	1107.	TIP SPEED	612.
STAGES	1.	VOL. FLOW	207,
DELTA H (ACT)	99.96	HEAD COEF FLOH COEF	0.444
GAMMA	1.43	FLON COEF	0.145
PRESS RATIO (T/	T) 1.14		

TABLE 59. — SPLIT-EXPANDER CYCLE — O/F = 6.0

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1610.7
VAC ENGINE THRUST	20000.
DEL. VAC. ISP	480.0
TOTAL ENGINE FLOW RATE	41.7
THROAT AREA	6.071
NOZZLE AREA RATIO	1000.0
ENGINE MIXTURE RATIO	6.80
CHAMBER/NOZZLE COOLANT DP	583.
CHAMBER/NOZZLE COOLANT DT	1018.
ETA C#	0.993
CHAMBER/NOZZLE Q	11190.

ENGINE STATION CONDITIONS

	* FUEL	SYSTEM CO			
STATION	PRESS	TEMP	FLOM	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	5.96	-107.5	4.37
B.P. EXIT	100.6	38.5	5.96	-103.0	4.39
PUMP INLET	100.6	38.5	5.96	-103.0	4.39
IST STAGE EXIT	2163.5	70.1	5.96	33.2	4.36
JBV INLET	2120.0	70.5	2.98	33.2	4.33
JBV EXIT	1808.4	72.9	2.98	33.2	4.12
2ND STAGE EXIT	3465.7	90.6	2.98	122.3	4.35
PUMP EXIT	4732.3	110.0	2.98	208.3	4.37
COOLANT INLET	4684.7	110.4	2.98	208.3	4.35
COOLANT EXIT	4101.7	1128.8	2.98	3965.4	0.62
TBV INLET	4060.2	1129.1	0.17	3965.4	0.62
TBV EXIT	1884.0	1144.7	0.17	3965.4	0.30
LOX TRB INLET	4060.2	1129.1	2.81	3965.4	0.62
LOX TRB EXIT	3583.4	1101.3	2.81	3855.8	0.57
H2 TRB INLET	3583.4	1101.3	2.81	3855.8	0.57
H2 TRB EXIT	1994.0	976.B	2.81	3381.8	0.37
H2 TRB DIFF	1972.8	977.0	2.81	3381.8	0.36
H2 BST TRB IN	1953.0	977.1	2.81	3381.8	0.36
H2 BST TRB EXIT	1930.3	974.5	2.81	3372.2	0.36
H2 BST TRB DIFF	1925.4	974.5	2.81	3372.2	0.35
OZ BST TRB IN	1906.1	974.7	2.81	3372.2	0.35
OZ BST TRB EXIT	1894.2	973.3	2.81	3367.1	0.35
O2 BST TRB DIFF	1893.5	973.3	2.81	3367.l	0.35
H2 TANK PRESS	18.6	996.0	0.0048	3400.5	0.0035
GOX HEAT EXCH IN	1884.0	982.9	2.81	3400.5	0.34
GOX HEAT EXCH OUT	1875.4	982.2	2.81	3397.7	0.34
MIXER HOT IN	1875.4	982.2	2.81	3397.7	0.34
MIXER COLD IN	1808.4	72.9	2.98	33.2	4.12
MIXER OUT	1790.3	495.2	5.95	1667.0	0.63
FSV INLET	1790.3	495.2	5.95	1667.0	0.63
FSV EXIT	1746.5	495.3	5.95	1667.0	0.62
CHAMBER INJ	1729.4	495.4	5.95	1667.0	0.61
CHAMBER	1610.8				

	* OXY	GEN SYSTEM	CONDITION	S =	
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	35.77	61.9	70.99
B.P. EXIT	134.5	165.3	35.77	62.3	70.84
PUMP INLET	134.5	165.3	35.77	62.3	70.84
PUMP EXIT	2592.0	177.1	35.77	70.9	71.30
02 TANK PRESS	16.0	400.0	0.06	204.7	0.12
POSV INLET	2565.9	177.2	5.31	70.9	71.26
POSV EXIT	1804.4	180.1	5.31	70.9	70.07
OCV INLET	2565.9	177.2	30.40	70.9	71.26
OCV EXIT	1808.3	180.1	30.40	70.9	70.07
PRIMARY INJ	1769.0	180.2	5.31	70.9	70.01
SECONDARY INJ	1772.2	180.2	30.40	70.9	70.01
CHAMBER	1610.7				

	VAL	VE DATA							

VALVE	DELTA P	AREA	FLOW	* BYPASS					
JBV	330.	0.121	2.98	50.00					
TBV	2176.	0.010	0.17	5.59					
FSV	44.	1.654	5.95						
POSV	762.	0.034	5.31						
OCV	758.	0.196	30.40						

		* FUEL *		OXID #
			PRIMARY	SECOND
DELP P	MAN	17.78	17.59	17.95
DELP I	LNJ	100.88	158.28	161.51
AREA		1.14	0.08	0.43
FLOW		5.95	5.31	30.40

TABLE 59. — SPLIT-EXPANDER CYCLE — O/F = 6.0 (CONTINUED)

	*******	*****	*********	* *		
			RFORMANCE DATA			
	******	*****	******	« #		
*****	*****			*******		
# H2 BOOST T				BOOST PUM		
*******				****		
			EFFICIEN		0.765	
EFFICIENCY HORSEPOWER SPEED (RPM)	38.		HORSEPOR		38.	
SPEED (RPM)	46119.		SPEED		46119.	
MEAN DIA (IN)	1.90		S SPEED		3044.	
EFF AREA (IN2)			HEAD Dia.	(FT)	2694.	
ILC (IDEAL)	0.512		DIA.	(IN)	2.18	
U/C (IDEAL) MAX TIP SPEED	382.		TIP SPEE		438.	
CTACES	1.		VOL. FLO	H	609.	
DELTA H (ACT)	9.58		UE 10 COS		0.451	
GAMMA	1.43		FLOW COE	F	0.201	
PRESS RATIO (T/T						
FRESS RAILO (III	,					
******				******		
# H2 TURBINE				H2 PUMP		
*******			**	*******	•	
	STAGE 1 S	TAGE 2	s.	TAGE ONE	STAGE THO	STAGE THREE
	******	****	**	*****	*****	********
CEETCIENCY	0.804	0.807	EFFICIENCY	0.642	0.620	0.625
MODSEDOMER	1885.	1885.	HORSEPOWER	1147.	376.	362.
COECD (PPM)	124731 . 12	4731.	SPEED (RPM)	124731.	124731.	124731.
MEAN DIA (IN)	3.47	3.47	S SPEED	733.	732.	746.
EEE ADEA (IN?)	0.21	0.27	HEAD (FT)	67999.	43062.	41841.
U/C (IDEAL)	0.492	0.493	DIA. (IN)	3.68	3.02	3.02
MAY TIP SPEED	1890.	1890.	TIP SPEED	2007.	1643.	1643.
DELTA H	237.	237.	VOL. FLON	613.	307.	306.
CAMMA (ACT)	1.43	1.43	HEAD COEF	0.543	0.513	0.499
EFFICIENCY HORSEPOMER SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED DELTA H GAMMA (ACT) PRESS RATIO(T/T	1.33	1.35	FLOW COEF	0.092	0.092	0.093
TRESS KATTOTT						
********			***	*****	***	
* 02 BOOST				BOOST PU		
*********	*******			******		
EFFICIENCY HORSEPOWER	0.857		EFFICIE	NCY	0.764	
HUBSEBUMER	21.		HORSEPO	HER	21.	
SPEED (RPM)	12307.		SPEED	(RPH)	12307.	
MEAN DIA (IN)	5.21		S SPEED	l .	3030.	
EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED	2.02		HEAD	(FT) (IN)	241.	
U/C (IDEAL)	0.512				2.44	
MAX TIP SPEED	280.		TIP SPE		131.	
STAGES	1.		VOL. FL		227.	
DELTA H (ACT)	5.16		HEAD CO	EF	0.450	
GAMMA	1.43		FLOH CO	EF	0.201	
PRESS RATIO (T/	T) 1.01					
*****	***			*****		
* 02 TURBIN	E .			O2 PUMP		
******				*******		
EFFICIENCY	0.804 436.		EFFICIE	ENCY DHER	0.740	
HORSEPOWER	436.		HORSEPO	DHER	436.	
SPEED (RPM) MEAN DIA (IN)	73440.			(RPH)	73440.	
MEAN DIA (IN)	3.47		S SPEE		1864.	
EFF AREA (IN2)	0.25		HEAD	(FT) (IN)	4962.	
U/C (IDEAL)	0.425				1.92	
MAX TIP SPEED				EED	614.	
STAGES	1.		VOL. FI		225.	
DELTA H (ACT	109.63		HEAD C	DEF	0.423	
GAMMA	1.43		FLOW C	DEF	0.156	
PRESS RATIO LT.	(1)					

TABLE 60. — SPLIT-EXPANDER CYCLE — O/F = 6.5

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1410.8
VAC ENGINE THRUST	20338.
DEL. VAC. ISP	480.3
TOTAL ENGINE FLOW RATE	42.3
THROAT AREA	6.071
NOZZLE AREA RATIO	1000.0
ENGINE MIXTURE RATIO	6.50
CHAMBER/NOZZLE COOLANT DP	628.
CHAMBER/NOZZLE COOLANT DT	1118.
ETA C*	0.993
CHAMBER/NOZZLE Q	11597.

ENGINE STATION CONDITIONS

	* FUEL	. SYSTEM C	* 2MOITIONS		
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	5.65	-107.5	4.37
B.P. EXIT	96.0	38.4	5.65	-103.2	4.39
PUMP INLET	96.0	38.4	5.65	-103.2	4.39
IST STAGE EXIT	2104.8	69.3	5.65	29.6	4.36
JBV INLET	2065.6	69.7	2.83	29.6	4.33
JBV EXIT	1799.7	71.7	2.83	29.6	4.15
2ND STAGE EXIT	3371.8	89.4	2.83	116.6	4.34
PUMP EXIT	4602.9	108.3	2.83	200.4	4.36
COOLANT INLET	4559.9	108.6	2.83	200.4	4.34
COOLANT EXIT	3922.0	1226.8	2.83	4305.6	0.56
TBV INLET	3880.1	1227.1	0.28	4305.6	0.55
TBV EXIT	1868.7	1241.7	0.28	4305.6	0.27
LOX TRB INLET	3880.1	1227.1	2.55	4305.6	0.55
LOX TRB EXIT	3435.1	1198.1	2.55	4192.2	0.50
H2 TRB INLET	3435.1	1198.1	2.55	4192.2	0.50
H2 TRB EXIT	1968.6	1070.6	2.55	3708.2	0.33
H2 TRB DIFF	1949.3	1070.7	2.55	3708.2	0.33
H2 BST TRB IN	1931.4	1070.8	2.55	3708.2	0.32
H2 BST TRB EXIT	1910.8	1068.3	2.55	3698.8	0.32
H2 BST TRB DIFF	1906.3	1068.3	2.55	3698.8	0.32
OZ BST TRB IN	1888.3	1068.4	2.55	3698.8	0.32
OZ BST TRB EXIT	1878.0	1067.0	2.55	3693.7	0.32
02 BST TRB DIFF	1877.3	1067.0	2.55	3693.7	0.32
HZ TANK PRESS	18.6	1097.7	0.0041	3753.8	0.0032
GOX HEAT EXCH IN	1868.7	1084.3	2.55	3753.8	0.31
GOX HEAT EXCH OUT	1861.0	1083.4	2.55	3750.5	0.31
MIXER HOT IN	1861.0	1083.4	2.55	3750.5	0.31
MIXER COLD IN	1799.7	71.7	2.83	29.6	4.15
MIXER OUT	1783.6	530.0	5.65	1793.9	0.59
FSV INLET	1783.6	530.0	5.65	1793.9	0.59
FSV EXIT	1741.2	530.2	5.65	1793.9	0.58
CHAMBER INJ	1724.7	530.3	5.65	1793.9	0.57
CHAMBER	1610.7				

NOITATZ	PRESS	TEMP	FLON	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	36.76	61.9	70.99
B.P. EXIT	117.8	165.2	36.76	62.3	70.83
PUMP INLET	117.8	165.2	36.76	62.3	70.83
PUMP EXIT	2342.2	176.0	36.76	70.1	71.23
02 TANK PRESS	16.0	400.0	0.06	204.7	0.12
POSV INLET	2314.6	176.1	4.56	70.1	71.18
POSV EXIT	1752.8	178.2	4.56	70.1	70.30
OCV INLET	2314.6	176.1	32.14	70.1	71.18
OCV EXIT	1830.4	177.9	32.14	70.1	70.43
PRIMARY INJ	1726.9	178.3	4.54	70.1	70.26
SECONDARY INJ	1790.3	178.1	32.14	70.1	70.36
CHAMBER	1610.7			-	

	VAL	VE DATA		
	***	*****		
VALVE	DELTA P	AREA	FLON	% BYPASS
JBV	282.	0.125	2.83	50.00
TBV	2011.	0.018	0.28	9.82
FS¥	42.	1.654	5.65	
POSV	562.	0.034	4.56	
OCV	484.	0.259	32.14	

	# FUEL #		e dixo	
		PRIMARY	SECOND	
DELP MAN	17.15	12.91	19.96	
DELP INJ	96.84	116.21	179.62	
AREA	1.14	0.08	0.43	
FLOH	5.65	4.56	32.14	

TABLE 60. — SPLIT-EXPANDER CYCLE — O/F = 6.5 (CONTINUED)

			RFORMANCE DATA			

***********				BOOST PUR		
* H2 BOOST T	OKRINE .			*****		
######################################	0.839		EFFICIEN	ICY	0.765	
FLLICITION	34.		HORSEPON	ER	34.	
CDEED (RPM)	44378.		SPEED	(RPM)	44378.	
MEAN DIA (IN)	1.90		S SPEED		2980.	
EFF AREA (IN2)			HEAD	(FT)	2542.	
U/C (IDEAL)			DIA.	(IN)	2.18	
MAX TIP SPEED			TIP SPEE		422.	
STAGES	1.		VOL. FLO		578.	
DELTA H (ACT)	9.47		HEAD COE	F	0.459	
GAMMA	1.39		FLOW COE	F	0.198	
PRESS RATIO (T/T	1.01					
					_	
*******				H2 PUMP		
* H2 TURBINE				H2 PUMP		
********						STAGE THREE
	STAGE 1	STAGE 2				********
	******	. 707	EEE TO TENCY	0 661	0.620	0.625
EFFICIENCY	0.787	0.793	EFFICIENCY HORSEPOHER SPEED (RPM)	1062.	348.	335.
HORSEPOWER SPEED (RPM)	1744.	22010	SPEED (RPM) S SPEED	122010.	122010.	122010.
SPEED (RPM)	122010. 1	₹ 47	S SPEED	713.	711.	726.
MEAN DIA (IN)	0.21	0.27	HEAD (FT)	66256.	41945.	40737.
EFF AREA (INL)	0.649	0.474	DIA. (IN)	3.68	3.02	3.02
MAY TIP SPEED	1848.	1848.	TIP SPEED	1963.	1607.	1607.
SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED DELTA H	244.	240.	VOL. FLOH	582.	292.	291.
GAMMA (ACT)	1.39	1.39	HEAD COEF	0.553	0.523	0.507
GAMMA (ACT) PRESS RATIO(T/T	1.33	1.35	FLOW COEF	0.090	0.089	0.091
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
********	******			*****		
# 02 BOOST 1				BOOST PU		
********			****	*****	0.753	
EFFICIENCY	0.844		FEFTURE	NCY HER	18.	
HORSEPOWER	18.		HUKSEPU	(RPM)	11932	
SPEED (RPM) MEAN DIA (IN)	11932.		S SPEED		3336.	
MEAN DIA (IN)	5.21		2 2 CCD	(FT)	207.	
EFF AREA (IN2)	2.02		HEAD DIA.	(IN)	2.44	
U/C (IDEAL)	0.512 272.		TIP SPE		127.	
MAX TIP SPEED STAGES	1.		VOL. FL		233.	
			HEAD CO		0.412	
DELTA H (ACT)	1.39		FLOH CO	EF	0.213	
PRESS RATIO (T/						
TRESS RATES TO						
*******	***			*******		
≠ 02 TURBIN	E *			O2 PUMP		
*******	***			*****		
EFFICIENCY	0.783			NCY	0.736	
EFFICIENCY HORSEPOWER	409.		HORSEPO		409.	
SPEED (RPM)	71441.			(RPM)	71441.	
MEAN DIA (IN)	3.47		S SPEED		1981. 4496.	
EFF AREA (IN2)			HEAD	(FT) (IN)	1.92	
U/C (IDEAL)					598.	
MAX TIP SPEED	1082.		TIP SPE VOL. FL		232.	
STAGES	1.		HEAD CO		0.405	
DELTA H (ACT)	113.34		FLOW CO	XFF	0.165	
GAMMA	1.39	1	FLUM CU	A.,	*	
	T) 1.13					

TABLE 61. — SPLIT-EXPANDER CYCLE — O/F = 7.0

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1610.8
VAC ENGINE THRUST	20675.
DEL. VAC. ISP	477.4
TOTAL ENGINE FLOW RATE	43.3
THROAT AREA	6.071
NOZZLE AREA RATIO	1000.0
ENGINE MIXTURE RATIO	7.00
CHAMBER/NOZZLE COOLANT DP	693.
CHAMBER/NOZZLE COOLANT DT	1211.
ETA C#	0.988
CHAMBER/NOZZLE Q	12005.

	* FUEL	- ZAZIEM CO	* SMOTTEGMS		
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	5.42	-107.5	4.37
B.P. EXIT	93.3	38.4	5.42	-103.4	4.39
PUMP INLET	93.3	38.4	5.42	-103.4	4.39
1ST STAGE EXIT	2071.6	68.9	5.42	27.7	4.35
JBV INLET	2035.6	69.2	2.71	27.7	4.33
JBA EXIL	1794.4	71.1	2.71	27.7	4.16
2ND STAGE EXIT	3318.8	88.7	2.71	113.5	4.34
PUMP EXIT	4529.9	107.5	2.71	196.2	4.35
COOLANT INLET	4490.4	107.8	2.71	196.2	4.34
COOLANT EXIT	3797.5	1319.3	2.71	4628.2	0.50
TBV INLET	3754.8	1319.6	0.35	4628.2	0.50
TBV EXIT	1859.1	1333.6	0.35	4628.2	0.25
LOX TRB INLET	3754.8	1319.6	2.36	4628.2	0.50
LOX TRB EXIT	3331.6	1289.4	2.36	4510.9	0.46
H2 TRB INLET	3331.6	1289.4	2.36	4510.9	0.46
H2 TRB EXIT	1952.4	1158.8	2.36	4016.3	0.30
H2 TRB DIFF	1934.3	1158.9	2.36	4016.3	0.30
H2 BST TRB IN	1917.6	1159.0	2.36	4016.3	0.30
H2 BST TRB EXIT	1898.3	1156.4	2.36	4006.8	0.30
H2 BST TRB DIFF	1894.2	1156.5	2.36	4006.8	0.29
O2 BST TRB IN	1877.9	1156.6	2.36	4006.8	0.29
O2 BST TRB EXIT	1867.8	1155.2	2.36	4001.7	0.29
O2 BST TRB DIFF	1867.1	1155.2	2.36	4001.7	0.29
H2 TANK PRESS	18.6	1192.1	0.0036	4082.7	0.0029
GOX HEAT EXCH IN	1859.1	1178.3	2.36	4082.7	0.28
GOX HEAT EXCH OUT	1851.9	1177.3	2.36	4079.0	0.28
MIXER HOT IN	1851.9	1177.3	2.36	4079.0	0.28
MIXER COLD IN	1794.4	71.1	2.71	27.7	4.16
MIXER OUT	1779.6	562.8	5.41	1913.3	0.56
FSV INLET	1779.6	562.8	5.41	1913.3	0.56
FSV EXIT	1738.2	563.0	5.41	1913.3	0.54
CHAMBER INJ	1722.1	563.1	5.41	1913.3	0.54
CHAMBER	1610.8				

* OXY	GEN SYSTEM	CONDITIONS	S •	
PRESS	TEMP	FLON	ENTHALPY	DENSITY
16.0	162.7	37.96	61.9	70.99
104.1	165.2	37.96	62.2	70.82
104.1	165.2	37.96	62.2	70.82
2149.2	175.3	37.96	69.5	71.16
16.0	400.0	0.06	204.7	0.12
2119.8	175.4	3.88	69.5	71.12
1712.8	176.9	3.88	69.5	70.48
2119.8	175.4	34.02	69.5	71.12
1855.9	176.4	34.02	69.5	70.71
1694.0	177.0	3.88	69.5	70.45
1811.1	176.5	34.02	69.5	70.64
1610.1				
	PRESS 16.0 104.1 104.1 2149.2 16.0 2119.8 1712.8 2119.8 1855.9 1694.0	PRESS TEMP 16.0 162.7 104.1 165.2 104.1 165.2 2149.2 175.3 16.0 400.0 2119.8 175.4 1712.8 176.9 2119.8 175.4 1855.9 176.4 1894.0 177.0 1811.1 176.5	PRESS TEMP FLOW 16.0 162.7 37.96 104.1 165.2 37.96 104.1 165.2 37.96 2149.2 175.3 37.96 16.0 400.0 0.06 2119.8 175.4 3.88 2119.8 175.4 3.88 2119.8 175.4 34.02 1855.9 176.4 34.02 1855.9 176.4 34.02	16.0 162.7 37.96 61.9 104.1 165.2 37.96 62.2 104.1 165.2 37.96 62.2 2149.2 175.3 37.96 69.5 16.0 400.0 0.06 204.7 2119.8 175.4 3.88 69.5 1712.8 176.9 3.88 69.5 2119.8 175.4 34.02 69.5 1855.9 176.4 34.02 69.5 1895.0 177.0 3.88 69.5 1894.0 177.0 3.88 69.5

	VAL	VE DATA		
	# H H	*****		
DE	LTA P	AREA	FLOM	& BYPASS
	256.	0.125	2.71	50.00
	1896.	0.024	0.35	12.93
	41.	1.654	5.41	
	407.	0.034	3.88	
	264.	0.371	34.02	

INJECTOR DATA

	• FUEL •	•	■ C1XO
		PRIMARY	SECOND
DELP MAN	16.70	9.32	22.27
DELP INJ	94.69	83.90	200.43
AREA	1.14	0.08	0.43
FLOH	5.41	3.88	34.02

VALVE JBV TBV FSV POSV OCV

TABLE 61. — SPLIT-EXPANDER CYCLE — O/F = 7.0 (CONTINUED)

	* TURBOMAC	CHINERY P	ERFORMANCE DATA	Α =		
	******	********	*******			
*******	*******			********		
# H2 BOOST T	URBINE #		■ H2	BOOST PUR	₽ *	
*******	*******			******		
EFF1CTENCY	0.826			NCY	0.764	
HORSEPOHER	32.		HORSEPO	HER	32.	
SPEED (RPM)			SPEED	(RPM)	43200.	
MEAN DIA (IN)			S SPEED		2915.	
EFF AREA (IN2)			HEAD	(FT)	2455.	
U/C (IDEAL)			DIA.	(IN)	2.18	
MAX TIP SPEED	358.		TIP SPE	ED	411.	
STAGES	1.		VOL. FL		554.	
DELTA H (ACT)			HEAD CO		0.468	
GAMMA (ACT)	1.38		FLOW CO		0.195	
PRESS RATIO (T/)			1 2011 301			
******				* # # * * * * * *		
* H2 TURBINE				H2 PUMP		

*******		STAGE 2				STAGE THREE
		SIAGE 2				*******
FEETOTENCY	0 777	0.792	EFFICIENCY HORSEPOWER	0.640	0.619	0.624
EFFICIENCY	0.775	0.762	UNDER DOME D	1005	329.	317.
HORSEPOHER	1650.	1650.	HORSEPOWER SPEED (RPM) S SPEED	120203	120203.	120203.
SPEED (RPM)			SEED INCH!	696	694.	709.
MEAN DIA (IN)	3.47	3.47	5 SPEED (ET)	45297	61325	40126.
HEAN DIA (IN) EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED DELTA H	0.21	0.27	HEAU (FI)	7 40	3.02	3.02
U/C (IDEAL)	0.452	0.460	DIA. (IN)	1076	1507	1583.
MAX TIP SPEED	1821.	1821.	LIN PAFER	1734.	200	279.
DELTA H	251.	244.	VOL. FLUM	220.	1583. 280. 0.530	0.515
GAMMA (ACT) PRESS RATIO(T/T	1.38	1.38	HEAD COEF	0.087	0.550	
PRESS RATIO(T/T	1.33	1.35	FLOW COEF	0.087	0.007	0.000

# 02 BOOST				BOOST PU		

EFFICIENCY	0.833			NCY	0.726 17.	
HORSEPOWER	17.		HORSEPO			
SPEED (RPM) MEAN DIA (IN)	11659.			(RPM)	11659.	
MEAN DIA (IN)			S SPEED		3691.	
EFF AREA (IN2)			HEAD	(FT) (IN)	179.	
U/C (IDEAL)					2.44	
MAX TIP SPEED	265.		TIP SPE		124.	
STAGES	1.		VOL. FL		241.	
DELTA H (ACT)	5.11		HEAD CO	EF	0.373	
GAMMA	1.38		FLOW CO	EF	0.225	
PRESS RATIO (T/	1, 1.01					
*****				******		
# O2 TURBIN				02 PUMP =		

EFFICIENCY	0.767		EFF1C1E	NCY	0.729	
HORSEPOHER	391.		HORSEPO	IMER	391.	
SPEED (RPM)				(RPM)	70123.	
MEAN DIA (IN)			S SPEED		2103.	
EFF AREA (IN2)			HEAD	(FT)	4137.	
U/C (IDEAL)			DIA.	(IN)	1.92	
MAX TIP SPEED			TIP SPE		587.	
STAGES	1.		VÓL. FL		239.	
DELTA H (ACT)	117.33	:	HEAD CO		0.387	
GAMMA	1.38	1	FLOW CO	ŒF	0.174	
PRESS RATIO (T/	T) 1.13	•				

TABLE 62. — SPLIT-EXPANDER CYCLE — O/F = 12.0

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1250.0
VAC ENGINE THRUST	15884.
DEL. VAC. ISP	396.3
TOTAL ENGINE FLOW RATE	40.1
THROAT AREA	6.071
NOZZLE AREA RATIO	1000.0
ENGINE MIXTURE RATIO	12.00
CHAMBER/NOZZLE COOLANT DP	455.
CHAMBER/NOZZLE COOLANT DT	726.
ETA C*	0.980
CHAMBER/NOZZLE Q	8431.

ENGINE STATION CONDITIONS ************

	* FUEL	SYSTEM CO	NDITIONS #		
STATION	PRESS	TEMP	FLOW	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	3.09	-107.5	4.37
B.P. EXIT	93.6	38.9	3.09	-102.3	4.37
PUMP INLET	93.6	38.9	3.09	-102.3	4.37
IST STAGE EXIT	2053.3	76.4	3.09	48.7	4.14
JBV INLET	2053.5	76.4	0.00	48.7	4.14
JBV EXIT	1497.9	79.3	0.00	48.7	3.71
2ND STAGE EXIT	2924.6	92.0	3.09	114.3	4.12
PUMP EXIT	3762.9	106.9	3.09	177.3	4.11
COOLANT INLET	3708.6	107.3	3.09	177.3	4.09
COOLANT EXIT	3253.7	833.8	3.09	2909.1	0.67
TBV INLET	3212.2	834.1	0.52	2909.1	0.66
TBV EXIT	1568.7	844.6	0.52	2909.1	0.33
LOX TRB INLET	3212.2	834.1	2.56	2909.L	0.66
LOX TRB EXIT	2844.1	814.2	2.56	2830.0	0.61
H2 TRB INLET	2844.1	814.2	2.56	2830.0	0.61
H2 TRB EXIT	1650.5	726.3	2.56	2493.2	0.41
H2 TRB DIFF	1634.7	726.4	2.56	2493.2	0.40
H2 BST TRB IN	1620.0	726.5	2.56	2493.2	0.40
H2 BST TRB EXIT	1603.1	724.8	2.56	2486.9	0.40
H2 BST TRB DIFF	1599.5	724.8	2.56	2486.9	0.40
OZ BST TRB IN	1585.1	724.9	2.56	2486.9	0.39
O2 BST TRB EXIT	1576.3	724.0	2.56	2483.4	0.39
O2 BST TRB DIFF	1575.7	724.0	2.56	2483.4	0.39
H2 TANK PRESS	18.6	753.8	0.0033	2555.7	0.0046
GOX HEAT EXCH IN	1568.7	744.5	2.56	2555.7	0.38
GOX HEAT EXCH OUT	1562.2	743.6	2.56	2552.3	0.38
MIXER HOT IN	1562.2	743.6	2.56	2552.3	0.38
MIXER COLD IN	1497.9	79.3	0.00	48.7	3.71
MIXER DUT	1497.9	744.0	3.08	2552.3	0.36
FSV INLET	1497.9	744.0	3.08	2552.3	0.36
FSV EXIT	1320.1	745.1	3.08	2552.3	0.32
CHAMBER INJ	1311.3	745.1	3.08	2552.3	0.32
CHAMBER	1249.9				

	* OXY	GEN SYSTEM	CONDITIONS	S #	
STATION	PRESS	TEMP	FLOW	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	37.06	61.9	70.99
B.P. EXIT	82.2	165.1	37.06	62.2	70.82
PUMP INLET	82.2	165.1	37.06	62.2	70.82
PUMP EXIT	1569.4	172.9	37.06	67.6	71.01
02 TANK PRESS	16.0	400.0	0.06	204.7	0.12
POSV INLET	1541.3	173.0	2.93	67.6	70.97
POSV EXIT	1308.1	173.9	2.93	67.6	70.59
OCV INLET	1541.3	173.0	34.06	67.6	70.97
OCV EXIT	1495.2	173.2	34.06	67.6	70.89
PRIMARY INJ	1297.4	173.9	2.93	67.6	70.57
SECONDARY INJ	1450.4	173.3	34.06	67.6	70.82
CHAMBER	1249.6				

	VAL	VE DATA								
相非共同相对的										
VALVE	DELTA P	AREA	FLOM	% BYPASS						
JBV	555.	0.000	0.00	0.00						
TBV	1643.	0.033	0.52	16.98						
FSV	178.	0.600	3.08							
POSV	233.	0.034	2.93							
OCV	46.	0.193	34.06							

INJECTOR DATA

* FUEL * DELP MAN 9.17 DELP INJ 52.07 AREA 1.16 52.07 1.14 3.08 FLOH

TABLE 62. — SPLIT-EXPANDER CYCLE — O/F = 12.0 (CONTINUED)

	* TURBOMA	CHINERY P	ERFORMANCE DATA	A #			
	******		**********	* * *			
********	******		*********				
* H2 BOOST	TURBINE *		* H2	BOOST PU	MP *		
********	******		***		***		
EFFICIENCY	0.844		FFF1C1F1	NCY	0.608		
HORSEPOWER	23.		HORSEPO	JFR	23.		
SPEED (RPM)			SPEED		36541.		
MEAN DIA (IN)			S SPEED		1856.		
EFF AREA (IN2)			HEAD	(FT)	2472.		
U/C (IDEAL)			DIA.		2.18		
MAX TIP SPEED	302.		TIP SPE		347.		
STAGES	1.		VOL. FLO	OH-	317.		
DELTA H (ACT)	6.30		HEAD CO	EF.	0.659		
GAMMA	1.44		FLOH CO	EF	0.132		
PRESS RATIO (T/	T) 1.01						
*******	***			*******	*		
* H2 TURBIN	E .			H2 PUMP			
********				*****			
		STAGE 2				STAGE THREE	
		STROC 2				********	
EFFICIENCY				0.572			
	0.827	0.836	EFFICIENCY	659.			
HORSEPOWER	1221.		HORSEPOHER				
SPEED (RPM)		113796.	SPEED (RPM) S SPEED HEAD (FT) DIA. (IN) TIP SPEED	113/96.	113796.	113/96.	
MEAN DIA (IN)	3.47	3.47	S SPEED	499.	907.	932.	
EFF AREA (IN2)	3.47 0.21 0.534 1724.	0.27	HEAD (FT)	67185.	30401.	29329.	
U/C (IDEAL)	0.534	0.548	DIA. (IN)	3.68	3.02	3.02	
MAX TIP SPEED	1724.	1724.	TIP SPEED	1831.	1499.	1499.	
DELTA H	172.	165.	VOL. FLOW	335.	336.	337.	
GAMMA (ACT)	1.44	1.44	HEAD COEF	0.645	0.435	0.420	
DELTA H GAMMA (ACT) PRESS RATIO(T/T	1.33	1.35	FLOW COEF	0.055	0.435 0.110	0.112	
********	******		****	******	***		
* 02 BOOST	* JURBINE *		* 02	BOOST PU	MP #		
********			****	******			
EFF1CIENCY	0.878		EFF1C1E	√ CY	0.715		
HORSEPOWER	13.		HORSEPO	MFR.	13.		
SPEED (RPM)			SPEED	(RPM)	10741.		
MEAN DIA (IN)			S SPEED		4163.		
EFF AREA (IN2)				(FT)	135.		
					2.44		
U/C (IDEAL)				(IN)			
MAX TIP SPEED			TIP SPEE		115.		
STAGES	1.		VOL. FLO		235.		
DELTA H (ACT)			HEAD COE		0.330		
GAMMA	1.44		FLOW COE	EF .	0.238		
PRESS RATIO (T/	T) 1.01						
********	***			******			
* 02 TURBIN	Ε *			02 PUMP #			
*******	***		***				
EFFICIENCY	0.807		EFFICIEN	4CY	0.708		
HORSEPOWER	287.		HORSEPOR	√ ER	287.		
SPEED (RPM)	62881.		SPEED	(RPM)	62881.		
MEAN DIA (IN)			S SPEED		2365.		
EFF AREA (IN2)			WEAD	(FT)	3015.		
U/C (IDEAL)			DIA.	(IN)	1.92		
MAX TIP SPEED	953.		TIP SPEE	TD	526.		
			VOL. FLO		234.		
STAGES	1.				0,350		
DELTA H (ACT)	79.16		HEAD COE				
GAMMA	1.44		FLOW COE	.r	0.190		
PRESS RATIO (T/	1, 1.13						

TABLE 63. - FULL-EXPANDER CYCLE WITH REGENERATION - O/F = 5.0

		E	N	G	Į	N	Ε		P	E	R	F	0	R	ĸ	٨	N	a	E	- (P	V	1	ď	E	Ŧ	E	R	s		
 	_			_		_	_	_	_	_	_	_	_		_	_		_		_	_					_	_	_	_	_	

CHAMBER PRESSURE	1497.1
VAC ENGINE THRUST	16436.
DEL. VAC. ISP	477.1
TOTAL ENGINE FLOW RATE	34.4
THROAT AREA	5.547
NOZZLE AREA RATIO	1900.0
ENGINE MIXTURE RATIO	5.00
CHAMBER/NOZZLE COOLANT DP	772.
CHAMBER/NOZZLE COOLANT DT	385.
ETA CH	0.993
CHAMBER / NO ZZLE Q	8653.

ENGINE STATION CONDITIONS

	* FUEL	SYSTEM CO	* ZMOITIONS		
STATION	PRESS	TEMP	FLON	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	5.75	-107.5	4.37
B.P. EXIT	95.1	38.4	5.75	-103.3	4.39
PUMP INLET	95.1	38.4	5.75	-103.3	4.39
IST STAGE EXIT	1696.7	51.4	5.75	-2.2	4.41
2ND STAGE EXIT	3281.1	83.3	5.75	97.1	4.45
PUMP EXIT	4852.5	104.2	5.75	194.6	4.50
COLD REGEN IN	4801.2	104.7	5.75	194.6	4.48
COLD REGEN EX	4748.3	227.5	5.75	631.7	2.79
COOLANT INLET	4748.3	227.5	5.75	631.7	2.78
COOLANT EXIT	3976.7	612.3	5.75	2136.6	1.06
TBV INLET	3938.9	612.5	0.06	2136.6	1.05
TBV EXIT	1736.3	624.9	0.86	2136.6	0.49
LOX TRB INLET	3938.9	612.5	5.69	2136.6	1.05
LOX TRB EXIT	3570.4	600.B	5.69	2085.7	0.98
H2 TRB [NLET	3570.4	600.8	5.69	2085.7	0.98
H2 TRB EXIT	1859.4	527.2	5.69	1784.8	0.61
H2 TRB DIFF	1829.2	527.3	5.69	1784.8	0.61
H2 BST TRB IN	1808.7	527.4	5.69	1784.8	0.60
H2 BST TRB EXIT	1789.7	526.3	5.69	1780.5	0.59
H2 BST TRB DIFF	1776.4	526.4	5.69	1780.5	0.59
O2 BST TRB IN	1756.4	526.5	5.69	1780.5	0.58
O2 BST TRB EXIT	1747.5	525.9	5.69	1778.3	0.58
O2 BST TRB DIFF	1746.1	525.9	5.69	1778.3	0.58
H2 TANK PRESS	18.6	533.9	0.0086	1781.8	0.0066
GOX HEAT EXCH IN	1736.3	526.9	5.69	1781.8	0.58
GOK HEAT EXCH OUT	1727.4	526.6	5.69	1780.7	0.57
HOT REGEN IN	1727.4	526.6	5.69	1780.7	0.57
HOT REGEN EX	1675.0	407.9	5.69	1339.2	0.71
FSV INLET	1675.0	407.9	5.74	1339.1	0.71
FSV EXIT	1631.5	408.0	5.74	1339.1	0.70
CHAMBER INJ	1614.5	408.1	5.74	1339.1	0.69
CHAMBER	1496.5				
	* OXY	GEN SYSTEM	CONDITIONS	5 •	

	* OXY	ŒN SYSTEM	CONDITION	S •	
STATION	PRESS	TEMP	FLOM	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	28.76	61.9	70.99
B.P. EXIT	141.8	165.4	28.76	62.4	70.83
PUMP INLET	141.8	165.4	28.76	62.4	70.83
PUMP EXIT	2965.7	179.4	28.76	72.5	71.28
02 TANK PRESS	16.0	400.0	0.05	204.7	0.12
POSV INLET	2947.0	179.5	6.21	72.5	71.26
POSV EXIT	1792.8	184.0	6.21	72.5	69.45
OCV INLET	2947.0	179.5	22.50	72.5	71.26
OCV EXIT	1618.5	184.7	22.50	72.5	69.16
PRIMARY INJ	1738.8	184.2	6.21	72.5	69.36
SECONDARY INJ	1596.3	184.8	22.50	72.5	69.12
CHAMBER	1497.1				

	A:T	VE DATA		
	• • •	*****		
VALVE	DELTA P	AREA	FLON	% BYPASS
TBV	2203.	0.003	0.06	1.00
FSV	44.	1.502	5.74	
POSV	1154.	0.032	6.21	
oc v	1329.	0.109	22.50	

	* FUEL *	* C:XO *				
		FRIMARY	SECOND			
DELP MAN	17.63	20.85	11.03			
DELP INJ	99.78	241.70	99.21			
AREA	1.03	0.07	0.41			
FLOW	5.74	5.21	22.50			

TABLE 63. — FULL-EXPANDER CYCLE WITH REGENERATION — O/F = 5.0 (CONTINUED)

	*******		******			
			ERFORMANCE DATA			
		******	********			
********				********		
# H2 BOOST				BOOST PUP		
EFFICIENCY	0.779		FFFICIEN		0.765	
HORSEPOWER	34.		HORSEPON		34.	
SPEED (RPM)			SPEED	(RPH)	44528.	
MEAN DIA (IN)			S SPEED		3041.	
EFF AREA (IN2)			HEAD		2514.	
U/C (IDEAL)				(IN)	2.18	
MAX TIP SPEED			TIP SPEE		423.	
STAGES	1.		VOL. FLO HEAD COE		588. 0.451	
DELTA H (ACT)	1.38		FLOW COE		0.201	
GAMMA PRESS RATIO (T/			TEOR COL			
PRESS RATIO (1)	1, 1.01					
********	***		* *	******	•	
# H2 TURBIN	Æ ¥			H2 PUMP		
*******				******		
	STAGE 1 :					STAGE THREE
	*****		FEETOTENCY	V 444	0.666	0.667
EFF ICIENCY	0.853	0.838	EFFICIENCY HORSEPOHER SPEED (RPM)	823.	808.	793.
HOKSENOMER	118750 1	18750.	SPEED (RPM)	118750.	118750.	118750.
MEAN DIA (IM)	2.86	7.86	S SPEED	830.	837.	843.
FEF AREA (IN2)	0.31	0.40	HEAD (FT)	5.2380	51514.	50562.
U/C (IDEAL)	0.503	0.491	DIA. (IN)	3.44	3.44	3.44
MAX TIP SPEED	1484.	1484.	HEAD (FT) DIA. (IN) TIP SPEED VOL. FLOW HEAD COEF	1785.	1785.	1785.
DELTA H	148.	153.	VOL. FLOW	585.	581.	573.
GAMMA (ACT)	1.38	1.38	HEAD COEF	0.529	3.44 1785. 581. 0.520	0.510 0.101
PRESS RATIO(T/T	1.34	1.37	FLOW COEF	0.100	0.100	0.101
******				******		
# 02 BOOST				BOOST PU		
*********				******		
EFFICIENCY	0.861		EFFICIEN	ICY .	0.728	
HORSEPOHER	18.		HOR SEP OF		18.	
SPEED (RPM) MEAN DIA (IN)	11559.			(RPM)		
MEAN DIA (IN)	3.69		S SPEED		2439.	
EFF AREA (IN2)			HEAD DIA.	(FT)	256. 2.44	
U/C (IDEAL)			TIP SPEE		123.	
MAX TIP SPEED	186. 1.		VOL. FLO		182.	
STAGES DELTA H (ACT)			HEAD COE		0.542	
GAMMA	1.38			F	0.172	
PRESS RATIO (TA	(1)					
********				******		
# 02 TURBII				D2 PUMP =		
*********			EFF I CIEN	JCV	0.727	
EFFICIENCY HORSEPOHER	0.871 410.		HORSEPON	NER	410.	
SPEED (RPM	74295.		SPEED		74295.	
MEAN DIA (IN			S SPEED		1523.	
EFF AREA (IN2	0.43		HEAD	(FT)	5703.	
U/C (IDEAL			DIA.		1.93	
MAX TIP SPEED			TIP SPEE		627.	
STAGES	1.		VOL. FLO HEAD COO		181. 0.467	
DELTA H LACT	1.38		FLOW COS		0.128	
GAMMA PRESS RATIO (T.			, con con			
7 NC 33 NR 110 17						
	REGENERATOR					
		T SIDE				
		52.38 118.75				
	22.82 - 0.40	1.52				
AREA FLOH	5.75	5.69				
EFFECTIVENESS	0.29					
NTU	0.43					
CRATIO	0.97					
CMIN	20.47					
REGEN Q	2513.80	ı				

TABLE 64. — FULL-EXPANDER CYCLE WITH REGENERATION — O/F = 5.5

ENGINE	PERFORMANCE	PARAMETERS
*******		************

CHAMBER PRESSURE	1665.9
VAC ENGINE THRUST	18583.
DEL. VAC. ISP	479.0
TOTAL ENGINE FLOW RATE	38.8
THROAT AREA	5.547
MOZZLE AREA RATIO	1000.0
ENGINE MIXTURE RATIO	5.50
CHAMBER/NOZZLE COOLANT DP	818.
CHAMBER/NOZZLE COOLANT DT	437.
ETA C*	0.993
CHAMBER/NOZZLE Q	10064.

ENGINE STATION CONDITIONS

	* FUEL	SYSTEM CO	* SMOITIONS		
STATION	PRESS	TEMP	FLON	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4.	5.98	-107.5	4.37
B.P. EXIT	101.5	38.5	5.98	-102.9	4.39
PUMP INLET	101.5	38.5	5.98	-102.9	4.39
IST STAGE EXIT	1839.4	63.4	5.98	6.7	4.41
2ND STAGE EXIT	3563.3	87.0	5.98	114.5	4.46
PUMP EXIT	5278.7	109.7	5.98	220.4	4.52
COLD REGEN IN	5223.6	110.1	5.98	220.4	4.50
COLD REGEN EX	5168.4	241.7	5.98	697.7	2.80
COOLANT INLET	5168.4	241.7	5.98	697.7	2.80
COOLANT EXIT	4350.1	678.2	5.98	2381.6	1.05
TBV INLET	4308.9	678.5	0.06	2381.6	1.04
TBV EXIT	1925.1	693.0	0.06	2381.6	0.49
LOX TRB INLET	4308.9	678.5	5.92	2381.6	1.04
LOX TRB EXIT	3906.3	665.3	5.92	2325.7	0.98
HC TRB INLET	3906.3	665.3	5.92	2325.7	0.98
HZ TRB EXIT	2058.5	585.0	5.92	1999.0	0.61
H2 TRB DIFF	2025.8	585.2	5.92	1999.0	0.60
HC BST TRB IN	2003.6	585.3	5.92	1999.0	0.60
H2 BST TRB EXIT	1983.0	584.1	5.92	1994.4	0.59
HE BST TRB DIFF	1968.6	584.2	5.92	1994.4	0.59
CC BST TRB IN	1946.9	584.3	5.92	1994.4	0.58
OZ BST TRB EXIT	1937.3	583.6	5.92	1991.9	0.58
02 BST TRB DIFF	1935.8	583.6	5.92	1991.9	0.58
H2 TANK PRESS	18.6	594.0	0.0081	1995.B	0.0059
GOX HEAT EXCH IN	1925.1	584.8	5.92	1995.8	0.57
GOX HEAT EXCH OUT	1915.5	584.5	5.92	1994.6	0.57
HOT REGEN IN	1915.5	584.5	5.92	1994.6	0.57
HOT REGEN EX	1858.9	453.l	5.92	1512.5	0.71
FSV INLET	1858.9	453.1	5.97	1512.5	0.71
FSV EXIT	1811.8	453.2	5.97	1512.5	0.69
CHAMBER INJ	1793.4	453.3	5.97	1512.5	0.69
CHAMBER	1666.0				

	* OXY	GEN SYSTEM	CONDITIONS	*	
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	30.88	61.9	70.99
B.P. EXIT	145.0	165.4	32.88	62.4	70.84
PUMP INLET	145.0	155.4	32.88	62.4	70.84
PUMP EXIT	3006.5	179.2	32.88	72.4	71.36
02 TANK PRESS	16.0	400.0	0.06	204.7	0.12
POSV INLET	2982.1	179.2	5.92	72.4	71.32
POSV EXIT	1933.7	183.4	5.92	72.4	69.69
OCV INLET	2982.1	179.2	26.91	72.4	71.32
OCV EXIT	1838.6	183.7	26.91	72.4	69.53
PRIMARY INJ	1884.8	183.6	5.92	72.4	69.61
SECONDARY INJ	1807.1	183.9	26.91	72.4	69.48
CHAMBER	1665.9				

	VAL	VE DATA		
	***	*****		
VALVE	DELTA P	AREA	FLOW	% BYPASS
TSV	2384.	0.003	0.06	1.00
FSV	47.	1.502	5.47	
POSV	1048.	0.032	5.92	
OCV	1144.	0.141	26.91	

	* FUEL *	• (• dixi
		PRIMARY	SEC:►D
DELP MAN	19.12	24.32	15. = =
DELP INJ	108.44	218.93	141.15
AREA	1.03	0.07	0.41
FLOH	5.97	5.92	26.91

TABLE 64. — FULL-EXPANDER CYCLE WITH REGENERATION — O/F = 5.5 (CONTINUED)

			PERFORMANCE DAT			
				*** ********		
* H2 BOOST				BOOST PU		
******				*****		
EFFICIENCY	0.77			NCY		
HORSEPOWER	39		HORSEPOR	WER	39.	
SPEED (RPM)	46313		SPEED	(RPM)		
MEAN DIA (IN)		4	S SPEED		3037.	
EFF AREA (IN2)	2.4	5		(= 7)	2723.	
U/C (IDEAL)			DIA.	(IN)	2.18	
MAX TIP SPEED	271		TIP SPE	ΕD	440.	
STAGES	1		VOL. FLO		611.	
DELTA H (ACT)	4.6	2	HEAD CO	EF	0.452	
GAMMA	1.3	9	FLOH CO	EF	0.201	
PRESS RATIO (T/	TJ 1.0	1				
********				******		
# H2 TURBIN				H2 PUMP		
******		CTACE 3		*******		CTACE TIMES
		STAGE 2				STAGE THREE
FEETCTENCY	0 051	####### 0 079	EEEICIEANU	0 444	0 447	~**********
EFFICIENCY HORSEPOWER SPEED (RPM)	2784	9776	FLL I L'EMPA	0.000	0.66/	U.66/
SPEED (PPM)	123568	1235AR	SPEED (PPM)	123569	123548	123548
EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED DELTA H GAMMA (ACT)	0.31	0.40	HEAD (FT)	56800	55940	54985.
U/C (IDEAL)	0.50	0.40	DIA (IN)	3 66	3 44	3.44
MAX TIP SPEED	1566	1544	TIP SPEED	1857.	1858	1858.
DELTA H	162.	165.	VOL. FLOW	608.	602.	593.
GAMMA (ACT)	1.39	1.39	HEAD COFF	0.530	0.522	0.513
PRESS RATIO(T/T	1.34	1.37	FLOW COEF	0.100	0.100	0.100
********	******			*****	***	
* 02 BOOST	TURBINE .		• 02	BOOST PU	4P #	
*******	*******			*****		
EFFICIENCY	0.866	•	EFFICIEN		0.755	
HORSEPOWER	21.		HOR SEP OF	ÆR	21.	
SPEED (RPM)	12219.		SPEED	(RPM)	12219.	
MEAN DIA (IN)	3.65	1	S SPEED		2705.	
EFF AREA (IN2)		1	HEAD DIA.	(FT)	262.	
U/C [IDEAL]					2.44	
MAX TIP SPEED			TIP SPEE		130.	
STAGES	1.		VOL. FLO		208.	
DELTA H (ACT)			HEAD COE		0.497	
GAMMA PRESS RATIO (1/)	1.39		FLOH COE	.F	0.186	
PRESS MALID (17	1.00					
********				******		
# 02 TURBINE				2 PUMP *		
*********				*******		
					0.737	
	0.865 468.		EFFICIEN HORSEPOH	ιER	468.	
SPEED (RPM)	76597.		SPEED		76597.	
MEAN DIA (IN)	2.86		S SPEED		1663.	
EFF AREA (IN2)	0.43		HEAD	(FT)	5773.	
U/C (IDEAL)			DIA.	(IN)	1.43	
MAX TIP SPEED	957.		TIP SPEE	D	647.	
STAGES	1.		VOL. FLO		207.	
DELTA H (ACT)			HEAD COE		0.444	
GAMMA	1.39		FLOW COE	F	0.141	
PRESS RATIO (T/1	1.10					
_						
	REGENERATO					
	SIDE H					
	5.26	56.56				
		-131.40				
	0.40	1.52				
	5.98	5.92				
EFFECTIVENESS	0.2					
NTU	0.4					
CRATIO	1.0					
CMIN DECEN O	21.6					
REGEN Q	2852.6	′				

CHICKNAL PAGE IS OF FUCE QUALITY

TABLE 65. — FULL-EXPANDER CYCLE WITH REGENERATION — O/F = 6.0

STATION

B.P. INLET B.P. EXIT

PUMP INLET

PUMP EXIT

TBV EXIT

FSV INLET

FSV EXIT CHAMBER INJ

CHAMBER

STATION

B.P. INLET B.P. EXIT

PUMP INLET

PUMP EXIT

POSV INLET POSV EXIT

OCV INLET

CHAMBER

ENGINE PERFORMANCE PARAMETERS CHAMBER PRESSURE VAC ENGINE THRUST 20000. DEL. VAC. ISP TOTAL ENGINE FLOW RATE 489.1 41.7 HOZZLE AREA RATIO THROAT AREA 1000.0 ENGINE MIXTURE RATIO 6.00 CHAMBER/NOZZLE COOLANT DP CHAMBER/NOZZLE COOLANT DT 585. ETA C* 0.993 CHAMBER/NOZZLE Q 11390. ENGINE STATION CONDITIONS * FUEL SYSTEM CONDITIONS * TEMP FLOW PRESS FMTHM PY DENSITY 37.4 -107.5 18.6 5.96 4.37 5.96 -163.0 4.39 100.3 38.5 100.3 38.5 5.96 -103.0 4.39 1ST STAGE EXIT 63.9 88.1 1882.3 5.96 9.2 4.41 115.6 5.96 4.46 3651.4 5.96 228.1 4.53 COLD REGEN IN 5359.5 111.7 5.96 228.1 4.51 794.2 5.96 2.67 COLD REGEN EX 5305.2 263.0 COOLANT INLET 5305.2 263.0 790.2 COOLANT EXIT 4431.2 767.8 5.96 2781.8 0.96 2781.8 0.95 TBV INLET 4386.0 768.1 0.36 2030.5 LOX TRB INLET 4386.0 768.1 5.60 2761.8 0.95 753.6 2640.8 0.88 3984.6 LOX TRB EXIT 5.60 753.6 5.60 2640.8 0.88 HC TRB INCET H2 TRB EXIT 2159.4 665.3 5.60 2288.6 0.57 665.5 2288.6 H2 TRB DIFF 5.64 0.56 2127.6 HC BST TRB IN 2106.2 665.6 HC BST TRB EXIT 2086.3 664.4 5.60 2283.8 0.55 2283.8 0.55 HE BST TRB DIFF 2072.4 664.5 5.68 02 BST TRB IN 2051.5 664.6 5.60 02 BST TRB EXIT 2042.2 663.9 5.60 2281.3 0.54 2281.3 0.54 O2 BST TRB DIFF 2040.7 663.9 5.40 HZ TANK PRESS 682.3 0.0070 0.0051 18.6 GOX HEAT EXCH IN 2030.5 671.1 5.60 2586.4 0.53 GOX HEAT EXCH OUT 2021.2 670.7 5.60 2304.9 0.53 670.7 2304.9 HOT REGEN IN 2021.2 5.60 HOT REGEN EX 505.4 5.60 1707.1 0.67 1966.2 505.4 5.95 1767.1 0.67 5.95 1916.8 505.6 1707.1 505.7 1707.1 0.65 1764.0 * OXYGEN SYSTEM CONDITIONS * PRESS TEMP FLON ENTHALPY DENSITY 162.7 35.77 61.9 70.99 16.0 134.0 165.3 134.0 165.3 35.77 62.3 70.84 2854.8 178.4 35.77 71.9 71.34 02 TANK PRESS 16.0 400.0 0.06 178.5 5.32 71.9 71.30 1979.3 181.8 5.32 71.9 69.98 178.5 30.39 71.30 71.9 2825.9 181.7 30.39 71.9 69.99 LNI YARMIRA 1940.0 181.9 5.32 71.9 69.92 SECONDARY INJ 1943.0 181.9 30.39 69.92 1764.0 VALVE DATA

	*			
	4 # #	****		
VALVE	DELTA P	AREA	FLON	& BYPASS
TBV	2356.	0.016	0.36	5.97
FSV	49.	1.502	5.95	
POSV	847.	0.032	5.32	
DCV	843.	0.185	30.39	
	INJE	CTOR DATA		

	* FUEL *	. (oxid •
		PRIMARY	SECOND
DELP MAN	20.01	19.55	19.88
DELP INJ	1:3.49	175.97	178.93
AREA	1.03	0.07	0.41
FLOH	5.95	5.32	30.34

TABLE 65. — FULL-EXPANDER CYCLE WITH REGENERATION — O/F = 6.0 (CONTINUED)

PAGE ANNO REPORT OF THE PAGE AND A PAGE AND		
* TURBOMACHINERY P		
# H2 BOOST TURBINE #	# H2 BOOST PL	
***********	********	***
EFFICIENCY 0.770 HORSEPOHER 38.	EFFICIENCY	
HORSEPOHER 38. SPEED (RPM) 46052.	HORSEPOWER	38.
SPEED (RPM) 46052.	SPEED (RPM) S SPEED	46052. 3049.
FFF ARFA (IN2) 2.45	HEAD (FT)	2683.
U/C (IDEAL) 0.485	HEAD (FT) DIA. (IN)	2.18
MEAN DIA (IN) 1.34 EFF AREA (IN2) 2.45 U/C (IDEAL) 0.485 MAX TIP SPEED 269.	TIP SPEED	438.
5!AU-E.5 .	VOL. FLOH	609.
DELTA H (ACT) 4.79 GAMMA 1.36	MEAD COEF FLOW COEF	0.450 0.202
PRESS RATIO (T/T) 1.01	FEUR COEF	0.202
*****	*******	
# H2 TURBINE #	# H2 PUMP	
BERNARRANANA CTACE) CTACE 2	STACE ONE	STAGE THO STAGE THREE
3/AGE 1 3/AGE 2 BRANKAN MAKRANA	STAGE ONE	
EFFICIENCY 0.839 0.828	EFFICIENCY 0.667	0.668 0.668
HORSEPOMER 2792. 2792.	HORSEPOWER 946.	931. 915.
SPEED (RPM) 124577. 124577.	SPEED (RPM) 124577.	124577. 124577.
######################################	S SPEED 818.	823. 827.
EFF AREA (IN2) 0.31 0.40	HEAD IFF) 58219.	5/358. 56415. 7 44 7 44
HAX TIP SPEED 1557. 1557.	TIP SPEED 1872.	1873. 1873.
DELTA H 176. 176.	VOL. FLOH 606.	599. 590.
GAMMA (ACT) 1.36 1.36	HEAD COEF 0.534	0.526 0.517
PRESS RATIO(T/T 1.34 1.37	FLOH COEF 0.098	0.099 0.099
******	*******	
# 02 BOOST TURBINE #	■ 02 BOOST PU	
**********	*******	
EFFICIENCY 0.861 HGRSEPOHER 20. SPEED (RPH) 12293. MCAN DIA (IN) 3.69	EFFICIENCY HORSEPOWER SPEED (RPM)	0.764
HGRSEPOHER 20.	HORSEPOWER	20.
SPEED (RPM) 12293. MEAN DIA (IN) 3.69	SPEED (RPM) S SPEED	12293. 3036.
555 1051 (111) 3.07	HEAD (FT)	240.
U/C (IDEAL) 0.514 MAX TIP SPEED 198.	HEAD (FT) DIA. (IN) TIP SPEED	2.44
MAX TIP SPEED 198.	TIP SPEED	
STAGES 1.	VOL. FLOM HEAD COEF	227. 0.449
DELTA H (ACT) 2.58 GAMMA 1.36	HEAD COEF FLOW COEF	0.449
PRESS RATIO (T/T) 1.00	FEOR COEF	0.201

* 02 TURBINE *	# 02 PUMP #	
EEEICIEUCV 0 950	########## EFFICIENCY	
HORSEPOMER 483.	EFFICIENCY HORSEPOWER SPEED (RPM) S SPEED	483.
SPEED (RPM) 76647.	SPEED (RPM)	76647.
EFFICIENCY 0.850 HORSEPOMER 483. SPEED (RPM) 76647. MEAN DIA (IN) 2.86 EFF AREA (IN2) 0.43		
EFF AREA (IN2) 0.43	HEAD (FT) DIA. (IN)	5490.
U/C (IDEAL) U.SUS	DIA. (IN) TIP SPEED	1.93 647.
MAX TIP SPEED 958. STAGES 1.	VOL. FLOH	225.
DELTA H (ACT) 60.92	HEAD COEF FLOW COEF	0.422
GAMMA 1.36	FLOW COEF	0.154
PRESS RATIO (T/T) 1.10		
REGENERATOR DATA		

COLD SIDE HOT SIDE DELP 54.26 55.05		
DELP 54.26 55.05 DELT 151.37 -165.29		
AREA 0.40 1.52		
FLOH 5.96 5.60		
EFFECTIVENESS 0.30		
NTU 0.43		
CRATIO 0.92		
CMIN 20.26 REGEN Q 3349.23		

TABLE 66. — FULL-EXPANDER CYCLE WITH REGENERATION — O/F = 6.5

ENGINE PERFORMANCE PARAMETERS

CHAMBER PRESSURE	1764.0
VAC ENGINE THRUST	20336.
DEL. VAC. ISP	480.3
TOTAL ENGINE FLOW RATE	42.3
THROAT AREA	5.547
NOZZLE AREA RATIO	1000.0
ENGINE MIXTURE RATIO	6.50
CHAMBER/NOZZLE COOLANT DP	884.
CHAMBER/NOZZLE COOLANT DT	578.
ETA C*	0.993
CHAMBER/NOZZLE Q	12145.

ENGINE STATION CONDITIONS

	# FUEL	SYSTEM CO	ONDITIONS .		
STATION	PRESS	TEMP	FLOH	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	5.65	-107.5	4.37
B.P. EXIT	95.5	38.4	5.65	-103.5	4.39
PUMP INLET	95.5	38.4	5.65	-103.3	4.39
1ST STAGE EXIT	1804.2	62.9	5.65	4.5	4.41
2ND STAGE EXIT	3498.9	86.1	5.65	110.5	4.46
PUMP EXIT	5184.6	108.4	5.65	214.5	4.52
COLD REGEN IN	5135.3	108.8	5.65	214.5	4.50
COLD REGEN EX	5085.7	292.4	5.65	911.6	2.40
COOLANT INLET	5085.7	292.4	5.65	911.6	2.40
COOLANT EXIT	4201.5	870.3	5.45	3060.9	0.81
TBV INLET	4153.7	870.6	0.71	3060.9	0.80
TBV EXIT	2021.1	884.8	0.71	3060.9	0.41
LOX TRB INLET	4153.7	870.6	4.94	3060.9	0.80
LOX TRB EXIT	3780.9	854.6	4.94	2995.6	0.75
H2 TRB INLET	3780.9	854.6	4.94	2995.6	0.75
H2 TRB EXIT	2136.8	762.9	4.94	2632.4	0.49
H2 TRB DIFF	2108.2	763.0	4.94	2632.4	0.49
H2 BST TRB IN	2089.0	763.2	4.94	2632.4	0.48
H2 BST TRB EXIT	2071.1	761.9	4.94	2627.6	0.48
H2 BST TRB DIFF	2058.6	762.0		2627.6	0.48
02 BST TRB IN	2039.9	762.1	4.94	2627.6	0.47
OZ BST TRB EXIT	2031.5	761.4	4.94	2624.9	0.47
02 BST TRB DIFF	2030.2	761.4	4.94	2624.9	0.47
	18.6	789.1		2679.4	0.0045
GOX HEAT EXCH IN	2021.1	776.9		2679.4	0.46
GOX HEAT EXCH OUT		776.4		2677.7	0.46
HOT REGEN IN	2012.7	776.4	4.94	2677.7	0.46
HOT REGEN EX	1963.1	553.1	4.94	1881.1	0.62
FSV INLET	1963.1	553.1	5.64	1881.1	0.62
FSV EXIT	1914.4	553.4	5.64	1881.1	0.60
CHAMBER INJ	1895.5	553.4	5.64	1881.1	0.60
CHAMBER	1764.1				

	* OXY	EN SYSTEM	CONDITIONS	S *	
STATION	PRESS	TEMP	FLOW	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	36.75	61.9	70.99
B.P. EXIT	117.1	165.2	36.75	62.3	70.83
PUMP INLET	117.1	165.2	36.75	62.3	70.83
PUMP EXIT	2607.6	177.3	36.75	71.1	71.28
02 TANK PRESS	16.0	400.0	0.06	204.7	0.12
POSV INLET	2577.0	177.4	4.65	71.1	71.23
POSV EXIT	1928.2	179.9	4.65	71.1	70.22
OCV INLET	2577.0	177.4	32.04	71.1	71.23
OCV EXIT	2006.1	179.6	32.04	71.1	70.34
PRIMARY INJ	1898.3	180.0	4.65	71.1	70.17
SECONDARY INJ	1961.9	179.8	32.04	71.1	70.27
CHAMBER	1764.0				

		VE DATA		
VALVE	DELTA P	AREA	FLOW	s poper
TBV	2133.	0.036	0.71	% BYPASS
FSV	49.	1.502	5.64	12.50
POSV	649.	0.032		
OCV			4.65	
UC V	571.	0.238	32.04	

	* FUEL *		OXID .
		PRIMARY	SECOND.
DELP MAN	19.65	14.92	21.44
DELP INJ	111.83	134.23	197.88
AREA	1.03	0.07	0.41
FLOW	5.64	4.65	32.04

TABLE 66. — FULL-EXPANDER CYCLE WITH REGENERATION — O/F = 6.5 (CONTINUED)

* TURBOMACHINERY PE		
*******************	****************	
* H2 BOOST TURBINE *	# H2 BOOST PUMP #	

EFFICIENCY 0.750	EFFICIENCY 0.3	
HORSEPOHER 34.		34.
SPEED (RPH) 44288.	SPEED (RPM) 4428 S SPEED 298	
MEAN DIA (IN) 1.34 EFF AREA (IN2) 2.45	HEAD (FT) 252	
U/C (IDEAL) 0.485	DIA. (IN) 2	
MAX TIP SPEED 259.	TIP SPEED 43	21.
STAGES 1.	VOL. FLOH 5	
DELTA H (ACT) 4.85	HEAD COEF 0.4	
GAMMA 1.38 PRESS RATIO (T/T) 1.01	FLOW COEF 0.	177
FRESS RATIO (171)		
***	******	
# H2 TURBINE #	# H2 PUMP #	
******	STACE ONE STACE	E THO STAGE THREE
STAGE 1 STAGE 2	*****	*****
EFFICIENCY 0.813 0.810	EFFICIENCY 8.666 0	.667 0.668
HORSEPOHER 2541. 2541.	EFFICIENCY 8.666 0 HORSEPONER 862.	847. 832.
SPEED (RPM) 121121. 121121.	SPEED (RPM) 121121. 121	121. 121121.
MEAN DIA (IN) 2 R6 2.R6	S SPEED 799. 1 HEAD (FT) 55857. 550	804. 809.
EFF AREA (IN2) 0.31 0.40	HEAD (FT) 55857. 550	
U/C (IDEAL) 0.448 0.455	DIA. (IN) 3.44 TIP SPEED 1821. 18	3.44 3.44 821. 1821.
MAX TIP SPEED 1513. 1513. DELTA H 185. 179.	VOL. FLON 575.	569. 561.
DELTA H 185. 179.	HEAD CORF 0.542 0	.534 0.525
GAMMA (ACT) 1.38 1.38 PRESS RATIO(T/T 1.34 1.37	FLOH COEF 0.096 0	.096 0.097
经国际股票公司	######################################	
H O2 BOOST TURBINE H	# UZ BOOS1 FOW "	
EFFICIENCY 0.842		753
HORGEPOHER 18.		18.
SPEED (RPM) 11907.	SPEED (RPH) 119	
MEAN DIA (IN) 3.69	2 SPEED 33	
EFF AREA (IN2) 3.60		06.
U/C (1DEAL) 0.514		.44 27.
MAX TIP SPEED 192. STAGES 1.		33.
DELTA H (ACT) 2.61		410
GAMMA 1.38		213
PRESS RATIO (T/T) 1.00		

* O2 TURBINE *	# 02 PUMP #	
* UZ IURDINE *	********	
EFFICIENCY 0.821	EFFICIENCY 0.	735
HORSEPOHER 457.		57.
SPEED (RPM) 74858.	SPEED (RPH) 748	
MEAN DIA (IN) 2.86	S SPEED 19 HEAD (FT) 50	30.
EFF AREA (1N2) 0.43 U/C (IDEAL) 0.468		.93
MAX TIP SPEED 935.		32.
STAGES 1.	VOL. FLOH 2	31.
DELTA H (ACT) 65.35		405
GAMMA 1.38	FLOM COEF 0.	162
PRESS RATIO (T/T) 1.10		
REGENERATOR DATA		

COUD SIDE HOT SIDE DELP 49.62 49.67		
DCC		
DELT 183.57 -223.29 AREA 0.40 1.52 -		
FLOH 5.65 4.94		
EFFECTIVENESS 0.33		
NTU 0.50		
CRATIO 0.82		
CMIN 17.64 REGEN 0 3938.60		
REGEN Q 3938.60		

TABLE 67. - FULL-EXPANDER CYCLE WITH REGENERATION - O/F = 7.0

DELP MAN

DELP INJ AREA

	ENGINE F		E PARAMETEI		
•					
	MBER PRESSU ENGINE THR			1763.9 20672.	
	. VAC. ISP			477.5	
	AL ENGINE F	LOW RATE		43.3 5.547	
	DAT AREA ZLE AREA RA	110		1000.0	
ENG	INE MIXTURE	RATIO		7.00	
	MBER/NOZZLE MBER/NOZZLE			890. 650.	
ETA		COOLANI	U	0.988	
CHA	MBER/NOZZLE	0		12914.	
		*******	CONDITIONS		
STATION	* FUEL PRESS	SYSTEM CO	NDITIONS .	ENTHALPY	DENSITY
B.P. INLET	18.6	37.4	5.42	-107.5	4.37
B.P. EXIT	91.8	38.4	5.42	-103.5	4.39
PUMP INLET	91.8 1748.8	38.4	5.42 5.42	-103.5 1.2	4.39 4.41
1ST STAGE EXIT 2ND STAGE EXIT	3390.2	62.2 84.8	5.42	104.1	4.45
PUMP EXIT	5020.7	106.5	5.42	205.1	4.51
COLD REGEN IN	4975.3	106.9	5.42	205.1	4.49
COLD REGEN EX COOLANT INLET	4929.1 4929.1	316.9 316.9	5.42 5.42	1013.2 1013.2	2.20 2.20
COOLANT EXIT	4038.9	967.2	5.42	3397.2	0.71
TBV INLET	3988.8	967.5	0.95	3397.2	0.70
TBV EXIT	2015.4	981.1	0.95	3397.2 3397.2	0.37 0.70
LOX TRB INLET LOX TRB EXIT	1988.8 3637.6	967.5 950.2	4.47 4.47	3328.2	0.66
H2 TRB INLET	3637.6	950.2	4.47	3328.2	0.66
H2 TRB EXIT	2121.5	853.8	4.47	2954.2	0.44
H2 TRB DIFF	2095.2	853.9 854.0	4.47 4.47	2954.2 2954.2	0.44
H2 BST TRB IN H2 BST TRB EXIT H2 BST TRB DIFF	2061.2	852.8	4.47	2949.3	0.43
H2 BST TRB DIFF		852.8	4.47	2949.3	0.43
OZ BST TRB IN	2032.7	852.9 852.3	4.47 4.47	2949.3 2946.6	0.42 0.42
O2 BST TRB EXIT O2 BST TRB DIFF	2023.8	852.3	4.47	2946.6	0.42
H2 TANK PRESS	18.6	887.8	0.0049	3025.5	0.0039
GOX HEAT EXCH IN	2015.4	874.7	4.47	3025.5	0.41
GOX HEAT EXCH OUT HOT REGEN IN	7 2007.8 2007.8	874.2 874.2	4.47 4.47	3023.6 302 3 .6	0.41
HOT REGEN EX	1962.1	597.9	4.47	2043.9	0.57
FSV INLET	1962.1	597.9	5.41	2043.9	0.57
FSV EXIT	1913.6	598.2	5.41	2043.9	0.56 0.56
CHAMBER INJ CHAMBER	1894.9 1764.2	598.3	5.41	2043.9	0.56
		EN SYSTEM TEMP	CONDITIONS	S # ENTHALPY	DENSITY
STATION B.P. INLET	PRESS 16.0	162.7	37.95	61.9	70.99
B.P. EXIT	101.6	165.2	37.95	62.2	70.82
PUMP INLET	101.6	165.2	37.95	62.2	70.82
PUMP EXIT	2379.8 16.0	176.4 400.0	37.95 0.06	70.4 204.7	71.20 0.12
OZ TANK PRESS POSV INLET	2347.2	176.5	3.94	70.4	71.15
POSV EXIT	1880.9	178.3	3.94	70.4	70.42
OCV INLET	2347.2	176.5	33.94 33.94	70.4 70.4	71.15 70.66
OCV EXIT PRIMARY INJ	2034.5 1859.4	177.7 178.4	3.94	70.4	70.39
SECONDARY INJ	1985.1	177.9		70.4	70.58
CHAMBER	1763.4				
		VE DATA			
VALVE	DELTA P		FLOM	1 BYPASS	
TBV	1973. 48.	0.053	0.95 5.41	17.51	
FSV POSV	48. 466.	1.502 0.032	5.41 3.94		
0CA	313.	0.340			
	3L HI	CTOR DATA			
_		********			
■ FUEL		IXO * Y&a≌'			

PRIMARY 10.98 96.38

5.94

19.45

111.54

1.05

SECOND 24.56 221.10

0.41 31.94

TABLE 67. — FULL-EXPANDER CYCLE WITH REGENERATION — O/F = 7.0 (CONTINUED)

######################################		
TURBOMACHINERY PI		
	****	***
# H2 BOOST TURBINE #	# H2 BOOST PU	
*****	********	
EFFICIENCY 0.734	EFFICIENCY	0.765
HORSEPOHER 31.	HORSEPOHER	31.
SPEED (RPM) 42920.		42920.
MEAN DIA (IN) 1.34 EFF AREA (IN2) 2.45	S SPEED	2940.
	HEAD (FT) DIA. (IN)	2406.
U/C (1DEAL) 0.485	DIA. (IN) TIP SPEED	2.18 408.
MAX TIP SPEED 251. STAGES 1.	VOL. FLOH	554.
DELTA H (ACT) 4.90	MEAD COEE	0 465
GAMMA 1.40	FLOW COEF	0.197
PRESS RATIO (T/T) 1.01		
********	被放弃的	
# H2 TURBINE #	# H2 PUMP	
######################################	RHARRAGEA STACE ONE	STAGE THO STAGE THREE
STAGE 1 STAGE 2		
FEETCIENCY 0.792 0.795	EFFICIENCY 0.665	0.666 0.667
EFFICIENCY 0.792 0.795 HORSEPOMER 2345. 2365. SPEED (RPM) 118602. 118602. MEAN DIA (IN) 2.86 2.86 EFF AREA (1N2) 0.31 0.40	HORSEPOWER 802.	789. 774.
SPEED (RPM) 118602. 118602.	SPEED (RPM) 118602.	118602. 118602.
MEAN DIA (IN) 2.86 2.86	S SPEED 784.	790. 795.
EFF AREA (1H2) 0.31 0.40	HEAD (FT) 54197.	53348. 52410.
U/C (IDEAL) 0.425 0.438	DIA. (IN) 3.44	3.44 3.44
MAX TIP SPEED 1482. 1482.	TIP SPEED 1783.	1783. 1783. 547. 539.
U/C (IDEAL) 0.425 0.438 MAX TIP SPEED 1482. 1482. DELTA H 192. 182. GAMMA (ACT) 1.40 1.40 PRESS RATIO(T/T 1.34 1.37	HEAD COSE 0.549	0.540 0.530
PRESS PATINITYT 1.34 1.37	FLOW COEF 0.094	0.540 0.530 0.095 0.095
TRESS RATIOTITY		
********	******	
# 02 BOOST TURBINE #	■ 02 BOOST PU	
***********	********	
EFFICIENCY 0.826	EFFICIENCY HORSEPOHER	0.721 17.
HORSEPOHER 17.	SPEED (RPM)	11576
SPEED (RPM) 11574. MEAN DIA (IN) 3.69	S SPEED (RFR)	3743.
FEE AREA (IN2) 3.60		174.
EFF AREA (IN2) 3.60 U/C (IDEAL) 0.514	HEAD (FT) DIA. (IN)	2.44
MAX TIP SPEED 186.	TIP SPEED	123.
STAGES 1.	VOL. FLOW	241.
DELTA H (ACT) 2.64	HEAD COEF FLOW COEF	0.368
GAMMA 1.40 PRESS RATIO (T/T) 1.00	FLOM COEF	0.226
PRESS RATIO (171) 1.00		

# 02 TURBINE #	# O2 PUMP #	
*******	****	
EFFICIENCY 0.796 HORSEPOHER 436.	EFFICIENCY	0.729
HORSEPOHER 436.	HORSEPOHER SPEED (RPM)	
SPEED (RPM) 73352. MEAN DIA (IN) 2.86	S SPEED (RPM)	73352. 2029.
MEAN DIA (IN) 2.86 EFF AREA (IN2) 0.43		
U/C (IDEAL) 0.440	HEAD (FT) DIA. (IN)	1.93
MAX TIP SPEED 917.	TIP SPEED	619.
STAGES 1.	VOL. FLOH	239.
DELTA H (ACT) 68.96	HEAD COEF	0.387
GAMMA 1.40	FLOW COEF	0.171
PRESS RATIO (T/T) 1.10		
REGEMERATOR DATA		

COLD SIDE HOT SIDE		
DELP 46.20 45.68		
DELT 210.01 -276.25		
AREA 0.40 1.52 FLOW 5.42 4.47		
FLOM 5.42 4.47 EFFECTIVENESS 0.36		
NTU 0.55		
CRATIO 0.76		
CMIN 15.85		
REGEN Q 4377.96		

TABLE 68. - FULL-EXPANDER CYCLE WITH REGENERATION — O/F = 12.0

ENGINE PERFORMANCE PARAMETER	s
*********************	****
CHAMBER PRESSURE	1160.0
VAC ENGINE THRUST	13474.
DEL. VAC. ISP	396.3
TOTAL ENGINE FLOM RATE	34.0
THROAT AREA	5.547
NOZZLE AREA RATIO	1000.0
ENGINE MIXTURE RATIO	12.00
CHAMBER/NOZZLE COOLANT DP	417.
CHAMBER/NOZZLE COOLANT DT	793.
ETA CH	9.760
CHAMBER/NOZZLE Q	7296.

(CHAMBER/NOZZLE	COOLANT	DP	417.	
(CHAMBER/NOZZLE	COOLANT	DT	793.	
E	TA CH			9.980	
C	CHAMBER/NOZZLE	Q		7296.	
			CONDITIONS		

STATION			ONDITIONS .		DENSITY
STATION B.P. INLET	PKE22	37.4	2.62	ENTHALPY	4.37
9 B EVIT	18.6 61.5			-107.5 -104.7	4.37
DIMED TAN ET		38.1 38.1	2.62	-104.7	4.37
IST STAGE EXIT	13524	61.9		-9.1	4.23
2ND STAGE EXIT		84.1		83.6	4.17
PUMP EXIT	3813.5			173.9	4.16
COLD REGEN IN	3802.0	105.5	2.62	173.9	4.16
PUMP EXIT COLD REGEN IN COLD REGEN EX COOLANT INLET COOLANT EXIT TBV INLET TBV EXIT LOX TRB INLET LOX TRB EXIT H2 TRB EXIT H2 TRB DIFF	3788.2	105.5 642.8 642.8 1436.2	2.62	2243.4	0.98
COOLANT INLET	3788.2	642.8	2.62	2243.4	0.98
COOLANT EXIT	3371.4	1436.2	2.62	5031.2	0.41
TBV INLET	3351.4	1436.4	0.01	5031.2	0.41
TBV EXIT	2350.0	1443.9	0.01 0.01	5031.2	0.29
LOX TRB INLET	3351.4	1436.4	2.60	5031.2	0.41
LOX TRB EXIT	3146.7	1420.6	2.60 2.60	4969.8	0.39
H2 TRB INLET	3146.7	1420.6	2.60	4969.8	0.39
H2 TRB EXIT H2 TRB DIFF H2 BST TRB IN	2399.2	1347.0	2.60	4689.7	0.32
H2 TRB DIFF	2386.8 2378.7			4689.7	0.32
H2 BST TRB IN	2378.7	1347.2	2.60	4689.7	0.32
H2 BST TRB IN H2 BST TRB EXI H2 BST TRB DIF O2 BST TRB DIF O2 BST TRB DIF H2 TANK PRE GOX HEAT EXCH HOT REGEN IN HOT REGEN EX	T 2371.0	1346.4	2.60	4686.9	0.32
H2 BST TRB DIF	F 2365.7	1346.5	2.60	4686.9	0.32
OZ BST TRB IN	2357.9	1346.5	2.60	4686.9	0.31
OZ BST TRB EXI	T 2354.3	1346.1	2.60	4685.3	0.31
OZ BST TRB DIF	F 2353.8	1346.1	2.68	4685.3	0.31 0.31 0.0026 0.31
H2 TANK PRE	SS 18.6	1364.6	0.0015	4687.1	0.0026
GOX HEAT EXCH	IN 2350.0	1346.6	2.60		
GOX HEAT EXCH	001 2346.6	1345.8	2.60	4684.3	0.31
HOT REGEN EX	2346.6	753.7	2.60	4684.3 2604.1	0.31 0.54
AUI KEGEN EX	2326.5	753.7		2604.1	0.54
FSV INLET FSV EXIT	2326.5	760.4		2604.1	0.29
FSV EXIT	1227.1 1218.7	760.4	2.62	2604.1	0.29
CHAMBER	1160.0	700.4	2.02	2004.1	V.L/
C - IDER					
	# OXYG	EN SYSTE	N CONDITIONS		
STATION	PRESS 16.0 52.1	TEMP	FLOW	ENTHALPY	DENSITY
B.P. INLET	16.0	162.7	31.44	61.9	70.99
B.P. EXIT	52.1	164.9	31.44	62.1	70.81
PUMP INLET	52.1	164.9	31.44	62.1	70.81
PUMP INLET PUMP EXIT	1460.1	172.1	31.44 31.44 31.44	67. L	71.04
02 TANK PRES	S 16.0	400.0	0.05	204.7	0.12
02 TANK PRES	1437.7	172.2	2.72	67.1	71.00
POSV EXIT	1215.5	173.0	2.72	67.1	70.64
OCV INLET	1437.7	172.2	28.67	67.1	71.00
OCV EXIT	1352.4	172.5	2.72 2.72 28.67 28.67 2.72 28.67	67.1	70.86
PRIMARY INJ	1205.4	173.0	2.72	67.1	70.62
POSV EXIT OCV INLET OCV EXIT PRIMARY INJ SECONDARY INJ	1317.2	172.6	28.67	67.1	70.81
CHAMBER	1159.8				
		VE DATA			

VALVE	DELTA P	AREA		% BYPASS	
TBV	1001.	0.001	0.01	0.51	
FSV	DELTA P 1001. 1099.	0.100			
POSV	222.	0.032	2.72 28.67		
OCV	85.	0.184	28.67		
	• • • • •	CTOR DATA			
		.10R DAT			
		• 0x			
		- UA			

TABLE 68. — FULL-EXPANDER CYCLE WITH REGENERATION — O/F = 12.0 (CONTINUED)

*********	******		****	******		
# H2 BOOST 1	* SMIBRUT		* H2	BOOST PUR	4P =	
******	******			******		
EFFICIENCY	0.659	•	EFFICIEN	CY	0.647	
HORSEPOHER	10.		HORSEPON	ER	10.	
SPEED (RPM)	28390.		SPEED S SPEED	(RPM)	28390.	
MEAN DIA (IN)	1.34	i	S SPEED		2020.	
EFF AREA (1N2)	2.45	•	HEAD DIA.	(FT)	1412.	
EFF AREA (1M2) U/C (1DEAL)	0.485	•	DIA.	(IN)	2.18	
MAX TIP SPEED			TIP SPEE		270.	
STAGES	1.		VOL. FLO		269.	
DELTA H (ACT)	2.82	?	HEAD COE	F	0.623	
			FLOH COE	F	0.144	
PRESS RATIO (T/	1.01					
*********				******		
# H2 TURBINE				H2 PUMP		
*******	* # *		**	******		CTACE THREE
	STAGE 1	STAGE 2	SI			STAGE THREE
		*****	55510151011		0.507	0.507
EFFICIENCY	0.740	0.789	EFFICIENCY	0.585	0.573	U.57/
HORSEPOHER	1032.	1032.	HORSEPOWER	354.	343.	80450
EFFICIENCY HORSEPOWER SPEED (RPM) MEAN DIA (IN) EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED DELITA H GAMMA (ACT) PRESS RATIO(T/T	98658	98658.	SPEED (RPM)	78658.	78658.	780>8. 646
MEAN DIA (IN)	2.86	2.86	S SPEED	545.	35/.	202.
EFF AREA (1N2)	0.31	0.40	HEAD (FT)	43535	42///.	417/6.
U/C (IDEAL)	0.380	0.438	DIA. (IN)	3.44	5.44	3.44
MAX TIP SPEED	1233.	1233.	TIP SPEED	1483.	1483.	1483.
DELTA H	155.	125.	VOL. FLOW	278.	282.	282.
GAMMA (ACT)	1.36	1.36	HEAD COEF	0.637	0.626	0.614
PRESS RATIO(T/T	1.34	1.37	FLOW COEF	0.057	0.059	0.060

**********				BOOST PU		
# 02 BOOST				*****		
*********					0.715	
EFFICIENCY HORSEPOHER	0.798		EFFICIEN HORSEPON SPEED S SPEED	IC 1	4.713	
HORSEPOMER	6.		HUKSERUM	(DDM)	0579	
SPEED (RPM) MEAN DIA (IN)	8579.		SAFER	(Krm)	2919	
MEAN DIA (IN)	3.69	<u>'</u>	2 SPEED	(57)	74.	
EFF AREA (IN2) U/C (IDEAL)	3.60)	HEAD DIA.	(11)	2.44	
U/C (IDEAL)	0.514	•	DIA.	(141)	91.	
MAX TIP SPEED	178		TIP SPEE	.U	199.	
STAGES	1.	_	VOL. FLO	-	0.283	
DELTA H (ACT)	1.60		HEAD COE FLOW COE	.r -	0.253	
GAMMA PRESS RATIO (T/			FLUM CUC	,г	0.253	
PRESS RATIO (17	1.00	,				
********			***	*******		
# 02 TURBIN			* 0	2 PUMP .		

EFFICIENCY HORSEPOHER SPEED (RPM)	0.696	1	#FFICIEN	ICY	0.721	
FLLTCTEIACL	226	•	HORSEPON	FR.	226.	
SPEED (RPM)	58806		EFFICIEN HORSEPON SPEED	(RPM)	58806.	
MEAN DIA (IN)	2.86	- 5	S SPEED	•	2123.	
					2854.	
EFF AREA (IN2) U/C (IDEAL) MAX TIP SPEED	0.349	•	HEAD DIA.	(IN)	1.93	
MAX TIP SPEED	735		TIP SPEE	D	496.	
STAGES	1		VOL. FLO	ж	199.	
DELTA H (ACT)	61.39	9	HEAD COE		0.373	
GAHHA	1.30		FLOW COE		0.177	
PRESS RATIO (T/		_				
1	REGENERATO	OR DATA				
	*******	*****				
COLD	SIDE +	HOT SIDE				
DELP 1	3.85	20.11				
	7.32	-592.10				
	0.40	1.52.				
	2.62	2.60				
EFFECTIVENESS	0.4	48				
NTU	0.	96				
CRATIO	0.					
CHIN	9.					
REGEN O	5415.					

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE	3. REPORT TYPE AND	DATES COVERED
	June 1993	Fin	al Contractor Report
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
41 15 1 6 1 5			
Advanced Engine Study Pr	ogram		
			WU-593-12-11
6. AUTHOR(S)			C-NAS3-23858
A.I. Masters, D.E. Galler,	T.F. Denman, R.A. Shied, J.R. E	slack,	
A.R. Fierstein, G.L. Clark,	and B.R. Branstrom		
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS/ES)		DEDECORUMO ODGANIZATION
	Ame(o) And Addition(Lo)	["	B. PERFORMING ORGANIZATION REPORT NUMBER
Pratt & Whitney			
Government Engines & Sp P.O. Box 109600	ace Propulsion		E-7909
West Palm Beach, Florida	22410 0600		
west Faini Beach, Florida			
9. SPONSORING/MONITORING AGE	ENCY NAME(S) AND ADDRESS(ES)	1	0. SPONSORING/MONITORING
National Agranautics and S	lanca Administration		AGENCY REPORT NUMBER
National Aeronautics and S Lewis Research Center	space Administration		NACA CD 107217
Cleveland, Ohio 44135-3	191		NASA CR-187217
Cievolane, Onio 11133 3			
11. SUPPLEMENTARY NOTES			
D : .W C.D .ID			
Project Manager, G. Paul R	tichter, Space Propulsion Techn	ology Division, (216) 977-	-7537.
12a. DISTRIBUTION/AVAILABILITY	STATEMENT	12	26. DISTRIBUTION CODE
TT .1 .00 1 TV 10 1			
Unclassified - Unlimited			
Subject Category 20			
13. ABSTRACT (Maximum 200 word	s)	•	
A design and analysis stud	ly was conducted to provide ac	lvanced engine descriptio	ns and parametric data for space
transfer vehicles. The study	was based on an advanced oxy	gen/hydrogen engine in the	e 7,500 to 50,000 lbf thrust range.
Emphasis was placed on de	fining requirements for high-per	formance engines capable	of achieving reliable and versatile
operation in a space enviro	onment. Four variations on the	e expander cycle were con	mpared, and the advantages and
7 500 to 50 000 lb thrust on	d a wide range of chamber pres	velope, and performance da	ata were generated over a range of
7,500 to 50,000 to till ust all	d a wide range of chamber pres	sure and nozzie expansion	ratio.
	·		
14. SUBJECT TERMS			15. NUMBER OF PAGES
	etric rocket data; Expander cyc		236
Oxygen/hydrogen engines;	Space propulsion; Liquid prope	llant rockets	16. PRICE CODE All
17. SECURITY CLASSIFICATION	de opposition of the state of t	T	
	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	ON 20. LIMITATION OF ABSTRACT
OF REPORT Unclassified	OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	ON 20. LIMITATION OF ABSTRACT

National Aeronautics and Space Administration

Lewis Research Center Cleveland, Ohio 44135

Penalty for Private Use \$300

SPDE-2

FOURTH CLASS MAIL

ADDRESS CORRECTION REQUESTED

